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Traditional pharmacotherapies for Parkinson’s disease (PD) aim to restore depleted dopamine levels in the brain. While treatments such 
as levodopa do provide a clinical benefit to patients, they are limited by long-term complications, including dyskinesia. Such treatments 
are also conceptually limited, since PD is a complicated disorder in which multiple interacting neurotransmitter systems are implicated. 

Within the basal ganglia (a group of interconnected brain nuclei that help to control voluntary movement) dopamine, gamma-aminobutyric 
acid, and glutamate all play key roles. Thus, it is important to approach the treatment of PD from several different angles, by targeting 
different neurotransmitter systems in addition to those that are dopaminergic. The glutamatergic system, the topic of this review, is one 
promising area for the development of new pharmacotherapies in PD. Through actions on the glutamate system, new pharmacotherapies 
have the potential to improve cognition, mood and pain, as well as motor symptoms.
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Overview of topics covered in this review

Glutamate and the basal ganglia in the healthy brain
 Glutamate and glutamate receptors – role in motor circuitry

 The basal ganglia – anatomy and function

 The basal ganglia pathways and the role of glutamate in the healthy brain

Glutamate and the basal ganglia in the parkinsonian brain 
 Glutamate and Parkinson’s disease pathogenesis

 Glutamate excitotoxicity and Parkinson’s disease progression

Clinical implications of glutamate overactivity in Parkinson’s disease
 Motor symptoms 

 Motor complications and levodopa-induced dyskinesia

 Non-motor symptoms 

Glutamate as a potential target for Parkinson’s disease pharmacotherapy
 Modulation of glutamate receptors

 Inhibition of glutamate release

 Modulation of glutamate uptake

Parkinson’s disease (PD) is a central nervous system (CNS) degenerative disorder that is associated 

with typical motor symptoms, notably hypokinesia, bradykinesia, rigidity and resting tremor. 

PD is characterised by a striatal deficiency of the neurotransmitter dopamine, which is due to 

a progressive loss of nigral dopaminergic neurons. In addition, glutamatergic neurotransmission 

– the major excitatory system in the brain – and other neurotransmitter systems, such as 

inhibitory gamma-aminobutyric acid (GABA)ergic neurotransmission, play a critical role in the 

pathophysiology of PD.

First, this review addresses the role of glutamate in the basal ganglia in the context of a healthy 

brain, describing in particular motor circuitries. Following this, the pathophysiology of glutamate 

overactivity in PD is considered, along with the resulting motor and non-motor symptoms, before 

moving on to explore glutamatergic circuitry as a target for pharmacotherapies in PD.

mailto:peter.jenner@kcl.ac.uk
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Glutamate and the basal ganglia in the healthy 
brain
Glutamate and glutamate receptors – role in motor 
circuitry
Glutamate is the principal excitatory neurotransmitter in the CNS. It plays 

a central role in fundamental brain functions, including synaptic plasticity 

(important for learning and memory), formation of neural networks during 

development and repair of the CNS.1,2 Glutamate is also essential in the 

control of movement, due to its actions in neural circuits of the basal 

ganglia.3 Under certain conditions, however, glutamate can damage 

nervous tissue and is implicated in several brain disorders, including PD.4

Glutamate synthesis, release and metabolism
Glutamate is a non-essential amino acid with restricted passage to the 

brain from the blood. In the CNS, glutamate is synthesised in neurons as 

part of the glutamate–glutamine cycle.5,6

1. Glutamine, the most prevalent precursor of glutamate, is released 

from neighbouring glial cells and taken up by neuronal presynaptic 

terminals via excitatory amino acid transporters (EAATs).

2. Within the presynaptic terminals, glutamine is converted to glutamate 

by the mitochondrial enzyme glutaminase.

3. After its synthesis, glutamate is packaged into synaptic vesicles by 

vesicular glutamate transporters.

4. During neurotransmission, glutamate is released from the vesicles 

into the synaptic cleft, where it interacts with receptors that are 

located on the postsynaptic neuron. The release of glutamate from 

the presynaptic neuron is triggered by an action potential, as follows:

• an action potential causes voltage-gated ion channels to open in 

the cell membrane of the presynaptic neuron, allowing cations to 

enter or exit the cell;

• rapid influx of the cation Na+ alters the membrane potential of the 

neuron. The resulting depolarisation propagates the action potential 

further along the length of the neuron. This depolarisation also causes 

voltage-gated Ca2+ channels to open, allowing the influx of Ca2+; and

• at the presynaptic terminal, this Ca2+ influx triggers glutamate 

vesicles to fuse with the cell membrane and release glutamate 

into the synaptic cleft.

5. Glutamate is removed from the synaptic cleft by EAATs, which 

transport glutamate into glial cells or back into the presynaptic terminal. 

Glutamate is present in high concentrations in the synaptic cleft for only a  

short period.

6. In glial cells, glutamate is converted back to glutamine by the enzyme, 

glutamine synthetase.

Thus, neurons and glial cells work together, synthesising and 

recycling glutamate to ensure that an adequate supply is available for 

neurotransmission.7

Glutamate receptors
As described above, glutamate is released from the presynaptic  

neuron and interacts with its receptors on the cell membrane of the 

postsynaptic neuron. There are several types of glutamate receptor 

that, when triggered by glutamate, work together to modulate excitatory 

postsynaptic neurotransmission.8 The specific receptors that are activated 

by glutamate can be classified into two major families: ionotropic glutamate 

receptors and metabotropic glutamate receptors (mGluRs).8 Ionotropic 

glutamate receptors are ligand-gated ion channels and include the NMDA 

(N-methyl-d-aspartate), AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid) and kainate receptors, all of which share a similar 

structure but differ in their amino acid sequences, subunit combination, 

and agonist sensitivity/selectivity. mGluRs belong to the G-protein-

coupled receptor family and are classified into three groups (I, II and III) 

according to sequence similarity, signal transduction mechanism, and  

pharmacological properties.8,9

Ionotropic receptors
Whereas the opening of voltage-gated ion channels is dependent on 

membrane potential, ligand-gated ion channels require the binding of a 

ligand, such as glutamate. When glutamate binds to an AMPA or kainate 

receptor on the postsynaptic neuron, the ligand-gated ion channel 

opens, allowing a rapid influx of Na+.10 This temporarily depolarises the 

cell membrane, producing an excitatory postsynaptic response which 

can initiate an action potential. AMPA receptors mediate most of the fast 

excitatory neurotransmission in the brain, whereas kainate receptors are 

thought to have a modulatory role.

In contrast, the opening of NMDA receptor ion channels requires three 

events to occur: 11,12

• the binding of glutamate;

• the binding of a co-transmitter at a different site (commonly, the 

amino acids glycine or d-serine); and

• depolarisation of the cell membrane. At rest, NMDA receptors are 

blocked by a magnesium ion (Mg2+). Depolarisation, which can arise 

from activation of AMPA/kainate receptors as described above, is 

required to relieve the NMDA receptor of its Mg2+ blockade.

Upon opening, the NMDA receptors allow the entry of Ca2+, in addition 

to Na+. Ca2+ is thought to act as a second messenger, activating the 

intracellular signalling cascades that are associated with long-term 

potentiation and synaptic plasticity – the major cellular mechanisms that 

underlie learning and memory.13

Ionotropic receptors are present in all nuclei of the basal ganglia, with higher 

density in striatum.

Metabotropic receptors
Metabotropic receptors are not ion channels; instead, the binding of 

glutamate to a metabotropic receptor activates a G-protein within the 

cell.14 G-proteins act as second messengers, activating intracellular 

signalling cascades; via these pathways, the activation of mGluRs 

indirectly modulates postsynaptic ion channels.15

Metabotropic receptors are widely distributed in all nuclei of the basal 

ganglia16 and are associated with a slower postsynaptic response than 

ionotropic receptors; their stimulation can result in either increased or 

decreased excitability. Group I mGluRs are expressed on postsynaptic 

membranes,17,18 where they are thought to facilitate and strengthen 

responses mediated by ionotropic receptors. In contrast, group II and 

group III mGluRs are mainly expressed on presynaptic membranes, where 

they may function as autoreceptors, providing feedback to downregulate 

glutamate release.19,20

The basal ganglia – anatomy and function
In order to discuss the significance of glutamate in PD, mechanisms of 

motor control in healthy individuals must first be considered. The basal 

ganglia are a group of nuclei found deep in the cerebrum that play a vital 

role in controlling movement. The nuclei comprise the caudate nucleus 

and putamen (together forming the corpus striatum), the globus pallidus, 

the substantia nigra (in the midbrain), and the subthalamic nucleus 

(located just anterior to the substantia nigra) (Figure 1).21 Together, the basal 

ganglia receive and process sensory and motor information to coordinate 

voluntary motor activity.
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Sensory and motor input to the basal ganglia is received from specific 

regions of the cerebral cortex, with substantial contributions from the 

frontal, parietal, and temporal lobes. Nerve projections from these 

regions are mainly received by the corpus striatum, and are therefore 

referred to as the cortico-striatal pathway. Of note, cortical inputs to 

the caudate nucleus and putamen arise from functionally different 

regions, implying that the cortico-striatal pathway comprises parallel, 

interacting pathways with specialised functions (sensorimotor, cognitive 

and emotional–motivational).22 The basal ganglia also receive input from 

certain thalamic nuclei, and from the substantia nigra pars compacta 

(SNc; discussed in the following section).

The main sources of output from the basal ganglia circuitry are the 

internal globus pallidus (GPi) and the substantia nigra pars reticulata (SNr). 

Together, these two regions are referred to as the basal ganglia output 

nuclei. Signals emanating from the basal ganglia output nuclei ultimately 

target premotor neurons in the frontal cortex and brainstem. Neurons in 

the GPi project their axons mainly to the ventral anterior (VA) and ventral 

lateral (VL) nuclei of the thalamus, which in turn project to motor areas 

in the frontal cortex. These pallido-thalamic projections are particularly 

important for the control of limb movements. The SNr projects to the 

thalamus, but also to several premotor nuclei in the brainstem. Notably, 

SNr projections to the superior colliculus are important to co-ordinate 

eye and head movements.23

A distinctive feature of basal ganglia organisation is that all efferent 

nerve projections (except for those originating in the subthalamic 

nucleus and SNc) use the inhibitory neurotransmitter GABA as their main 

signalling molecule. Glutamate, however, is vital to regulate information 

processing in the basal ganglia, being the neurotransmitter used by both 

cortico-striatal and thalamo-cortical projections, and by efferent nerve 

projections originating in the subthalamic nucleus.24

The following section further considers the connections between nuclei 

of the basal ganglia, and expands on the role of glutamate in this circuitry.

The basal ganglia pathways and the role of 
glutamate in the healthy brain
Connections between the nuclei of the basal ganglia are complex and 

their physiological implications are not fully understood. However, there 

is consensus around the existence of two functional pathways linking the 

striatum with the basal ganglia output nuclei – the ‘direct’ pathway and 

the ‘indirect’ pathway, which together regulate motor activity (Figure 2).25  

Functional interactions between the direct and indirect pathways 

continue to be a topic of intense research.26–29 Nevertheless, the simplified 

Figure 1: Motor components of the human basal ganglia and associated structures
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GABA = gamma-aminobutyric acid; SNc = substantia nigra pars compacta; SNr = substantia nigra pars reticulata. Adapted from Purves et al.5

Figure 2: Basal ganglia functional motor circuitry – direct 
and indirect pathways
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model presented is well-accepted and provides a framework to consider 

the changes occurring in the PD brain.

In the absence of purposeful movement, the VA/VL complex of the 

thalamus is inhibited by the basal ganglia output nuclei (GPi and SNr), 

minimising its actions on the frontal cortex. Only when the inhibition 

is removed – termed ‘disinhibition’ – can the VA/VL complex act on 

the frontal cortex to stimulate motor activity. Such disinhibition of the 

thalamus occurs via the direct pathway:30–32

1. through the direct pathway, excitatory input to the corpus striatum 

from the cerebral cortex causes inhibition of the basal ganglia output 

nuclei; and

2. this, in turn, disinhibits the thalamic motor nuclei, leading to excitation 

of motor areas in the frontal cortex. Thus, the direct pathway provides 

a means for the basal ganglia to facilitate the selection and initiation 

of movement. 

The indirect pathway has an opposing effect, preventing disinhibition of 

the thalamus:

3. through the indirect pathway, excitatory input to the corpus striatum 

causes inhibition of the external globus pallidus (GPe);

4. this, in turn, disinhibits the subthalamic nucleus;

5. disinhibition of the subthalamic nucleus leads to a powerful excitation 

of the basal ganglia output nuclei; and

6. excitation of the basal ganglia output nuclei means that the thalamic 

motor nuclei remain inhibited.

Thus, stimulation of the direct pathway facilitates movement, while 

stimulation of the indirect pathway inhibits movement. The balance of 

activity between the two pathways determines when the thalamus will 

send facilitatory signals to cortical motor areas.

Both the direct and indirect pathways are strongly influenced by 

dopaminergic neurons that project from the SNc to the corpus striatum, 

referred to as the nigro-striatal pathway (Figure 3). Dopamine acts in 

the striatum via two main types of receptor, called D1 and D2, which 

mediate facilitatory and inhibitory actions, respectively. These two types 

of receptors are thought to be functionally segregated, such that the D1 

type is expressed in striatal neurons in the direct pathway, whereas the 

D2 type is expressed in striatal neurons in the indirect pathway.25,30,31,33 As 

a result of this organisation, dopaminergic nigro-striatal inputs have the 

following actions:34

1. via D1 receptors, the SNc facilitates the activation of striatal neurons 

in the direct pathway, increasing their responsiveness to cortico-

striatal input; and

2. via D2 receptors, the SNc opposes the activation of striatal neurons 

in the indirect pathway, decreasing their responsiveness to cortico-

striatal input.

Since the direct and indirect pathways have opposing actions on the 

basal ganglia output nuclei, the ultimate influence of the SNc is to 

lessen the inhibition exerted by the indirect pathway on the motor 

thalamus, therefore increasing the activity of motor areas in the 

frontal cortex.

As illustrated in Figure 3, glutamate mediates excitatory  

neurotransmission at crucial points in the basal ganglia circuitry:35

3. the corpus striatum receives an array of glutamatergic inputs from 

the cerebral cortex. Indeed, the corpus striatum has the highest 

density of glutamate receptors within the basal ganglia; and

4. the subthalamic nucleus sends glutamatergic projections to the 

basal ganglia output nuclei and the SNc.

The basal ganglia are a complex system with many more pathways 

between nuclei than have been discussed here. For example, the 

subthalamic nucleus also receives glutamatergic projections from the 

cerebral cortex (the hyperdirect pathway), and dopaminergic projections 

from the SNc.36 The pathways addressed here, however, are of particular 

interest in PD.

Figure 3: Basal ganglia functional motor circuitry – the role of neurotransmitters
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Glutamate and the basal ganglia in the 
parkinsonian brain
Glutamate and Parkinson’s disease pathogenesis
PD is characterised by a striatal dopamine deficiency resulting from 

progressive loss of nigral dopaminergic neurons. As discussed in the 

previous section, striatal dopaminergic D1 and D2 receptors influence the 

direct and indirect pathways of the basal ganglia, respectively. Consequently, 

a chronic loss of dopamine in the striatum has the following effects on basal 

ganglia circuitry (Figure 4):34,37

1. dopaminergic input to the corpus striatum is reduced;

2. a deficient stimulation of D1 receptors in direct-pathway striatal 

neurons leads to reduced inhibition of the basal ganglia output nuclei;

3. a deficient stimulation of D2 receptors in indirect-pathway striatal 

neurons leads to increased inhibition of the GPe, thus resulting in 

disinhibition of the subthalamic nucleus;

4. further along the indirect pathway, the disinhibited subthalamic 

nucleus causes a glutamatergic overstimulation of the basal ganglia 

output nuclei (and the SNc, as discussed in the following section);

5. together, the effects on the direct and indirect pathways prevent the 

activation of motor thalamic nuclei; and

6. in turn, this leads to a reduced stimulation of motor areas in the frontal 

cortex and hence to a decreased capacity for voluntary movement.

In summary, loss of nigral dopaminergic neurons and the subsequent 

striatal depletion of dopamine in PD leads to glutamate overactivity in 

the basal ganglia where high concentrations of glutamate can damage  

nervous tissue.4

Glutamate excitotoxicity and Parkinson’s disease 
progression
Excitotoxicity is the pathological process by which neurons are damaged 

or killed, mainly via excessive stimulation of glutamatergic receptors.38 The 

glutamate receptor subtype most strongly associated with excitotoxicity 

is the NMDA receptor, and the region of interest in PD is the SNc.39

The direct and indirect excitotoxicity hypotheses in PD pathogenesis 

stem from preclinical evidence in animal models and have to be further 

investigated in clinical settings.38,40

Direct excitotoxicity is the excessive stimulation of NMDA receptors 

due to either increased release of glutamate into the synaptic cleft, 

or decreased removal of glutamate from the synaptic cleft.1 In PD, 

glutamate overactivity in projections from the subthalamic nucleus 

results in glutamatergic overstimulation of the SNc.3

In early PD, this increased subthalamic nucleus activity may compensate 

for cell loss in the SNc by enhancing the activity of surviving dopaminergic 

neurons.3,41 With disease progression, however, continuous glutamatergic 

overstimulation of the remaining SNc neurons leads to a large influx of 

extracellular Ca2+ and creates metabolic changes within the neurons.4 

Together, these processes have downstream intracellular consequences, 

notably increasing oxidative stress, disrupting mitochondrial and 

bioenergetic homeostasis, and activating apoptosis.4 Ultimately, therefore, 

glutamatergic overstimulation can result in cell death.24,39

Even in the absence of a major increase in glutamate levels, nigrostriatal 

dopaminergic neurons are sensitive to indirect excitotoxicity.4 Indirect 

excitotoxicity can arise from mitochondrial deficits; without a continuous 

energy supply, a cell membrane becomes depolarised, compromising the Mg2+ 

blockade of NMDA receptors.8,9,42 As a result, even normal levels of glutamate 

result in excessive stimulation of glutamatergic receptors.4,39,42 It has been 

hypothesised that indirect excitotoxicity may be one of multiple mechanisms 

contributing to PD pathogenesis, by triggering cell death in the SNc.4,39

Clinical implications of glutamate overactivity in 
Parkinson’s disease
The glutamate overactivity observed in PD basal ganglia clinically 

results both in motor symptoms and motor complications, and also  

non-motor symptoms.3

Figure 4: Basal ganglia functional motor circuitry in Parkinson’s disease

4

5

4

3 6

1

Input (sensory and motor) Output (movement)

3

3

2

Direct pathway

Indirect pathway

Glutamate

GABA

Dopamine

Subthalamic
nucleus

GPe

Corpus striatum
D2 D1

Cerebral cortex Frontal cortex

Thalamus
VA/VL complex

SNc

GPi/SNr

Excitation

Inhibition

Disinhibition

Reduced effect

Increased effect

D1/D2 = dopamine type 1 or 2 receptors expressed in striatal neurons; GABA = gamma-aminobutyric acid; GPe = external globus pallidus; GPi = internal globus pallidus;  
SNc = substantia nigra pars compacta; SNr = substantia nigra pars reticulata; VA/VL = ventral anterior/ventral lateral. Adapted from Purves et al5 and Carrillo-Mora et al.108



The Role of Glutamate in the Healthy Brain and in the Pathophysiology of Parkinson’s Disease

7EUROPEAN NEUROLOGICAL REVIEW

Motor symptoms 
PD is associated with motor symptoms such as hypokinesia, 

bradykinesia and rigidity of the extremities and neck.37 These symptoms 

may arise, in part, due to glutamate overactivity in projections from 

the subthalamic nucleus. This leads to increased activity in the basal 

ganglia output nuclei that inhibit the thalamus, resulting in reduced 

facilitatory input to motor areas in the frontal cortex (Figure 5).38 As a 

result, movements are difficult to initiate and, once initiated, they are 

slow and may be difficult to stop.

Motor complications and levodopa-induced 
dyskinesia
Levodopa, a dopamine precursor, is used as a pharmacotherapy in PD to 

enhance dopaminergic neurotransmission. Over time, this benefit may 

wane and patients start to notice loss of benefit and re-emergence of PD 

symptoms with each dose of levodopa (wearing-off phenomenon) and 

fluctuate between mobility and immobility (on and off state, respectively). 

With chronic use of levodopa, furthermore, patients may experience 

troublesome involuntary movements – the so called levodopa-induced 

dyskinesia (LID) – that severely impact upon quality of life.43,44

Chronic levodopa treatment is thought to lead to overactivity of the direct 

pathway and underactivity of the indirect pathway, ultimately resulting 

in cortical excitation and dyskinesia.43 Overactivity of glutamatergic 

corticostriatal projections is a critical factor in the overactivity of the 

direct pathway, contributing to both the development and expression of 

LID.43,45 However, the pathophysiology of LID is complex, and a variety of 

neurotransmitters and receptors are involved in addition to glutamate.46,47

Non-motor symptoms
In addition to the motor symptoms already described, PD is associated 

with a range of non-motor symptoms, including pain, cognitive 

impairment/dementia, and mood disorders.48 Such non-motor symptoms 

are common, can occur at any stage of the disease, and are key 

determinants of quality of life.

Glutamate, as well as being the major excitatory neurotransmitter 

in the CNS and being key to learning and memory, also plays an 

important role in peripherally mediated pain signalling to the CNS49 

and in mood control.50 This section considers the possible contribution 

of glutamate overactivity to the occurrence of specific non-motor 

symptoms in PD.

Pain
Pain has a prevalence of around 60% among patients with PD.51,52 Pain 

in PD is most often of nociceptive origin, but may also be ascribed to 

neuropathic (radicular or central) or miscellaneous sources. While 

there are various ways to classify pain in PD, the most widely accepted 

is the Ford classification, which distinguishes five different types of 

PD pain: musculoskeletal (felt as an ache around the joints, arms or 

legs), dystonia-related, radicular or neuropathic, primary/central, and 

akathisia.51 Indeed, the recently validated King’s Parkinson’s Disease Pain 

Scale is based on seven domains including musculoskeletal pain, chronic 

body pain (central or visceral), fluctuation-related pain, nocturnal pain, 

oro-facial pain, pain with discolouration/oedema/swelling, and radicular 

pain.53 Patients with PD who report pain symptoms are also more likely to 

report depression and a decreased quality of life.51 Many patients with PD 

also report poor management of pain, with the use of analgesics being 

lower than expected (around half of patients).51 More recent findings 

showed that patients with PD both with and without pain may have a 

low heat pain threshold (regardless of being in an ‘on’ or ‘off’ state), and 

abnormal pain-evoked responses suggest that patients with PD may be 

predisposed to developing pain.54,55

Large and case-control clinical studies found that a consistent proportion 

of patients experienced pain when they were drug-free.56–58 This supports 

a link between pain and pathophysiological PD mechanisms. Because 

basal ganglia are involved not only in motor functions but also in the 

processing of nociceptive and non-nociceptive inputs, it is conceivable 

that nigrostriatal damage leading to a dysfunction of the control exerted by 

basal ganglia on cerebral areas devoted to processing nociceptive inputs 

might at least partly account for the increased risk of pain in PD.59 Nigral 

and extra-nigral pathology, involving cortical areas, brainstem nuclei and 

spinal cord, may contribute to abnormal central nociceptive processing 

in patients with PD who are experiencing pain.53 Recently, the contribution 

of the dorsal striatum in pain inhibition has been demonstrated.60,61 The 

Figure 5: Basal ganglia functional motor circuitry in Parkinson’s disease, and potential links to motor symptoms of 
Parkinson’s disease
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dorsal striatum is in effect connected to the descending pain modulatory 

system and in particular to the rostral ventromedial medulla through 

the medullary dorsal reticular nucleus.62 The neurobiology of pain in 

PD is complex and appears to involve serotonergic, noradrenergic, 

glutamatergic and GABAergic neurotransmission, in addition to the 

dopaminergic systems.63

Glutamate neurotransmission plays an important role in both normal and 

pathophysiological nociception.64 Peripheral sensory information and pain 

signals are transmitted to the spinal cord via primary afferent neurons, 

the majority of which are glutamatergic. Upon noxious stimulation, 

glutamate is released from central terminals in the spinal cord, 

where it activates AMPA receptors on secondary neurons. Prolonged 

activation of nociceptors evokes continuous release of glutamate, 

and subsequently causes long-lasting membrane depolarisation. This 

exaggerated signalling relieves the voltage-dependent Mg2+ block on 

NMDA receptors, and consequently allows their activation by glutamate. 

Additionally, postsynaptic mGluRs, (specifically mGluR1 and mGluR5),65 

and some presynaptic kainate receptors localised on central terminals of 

primary afferents, also play a role in nociceptive transmission. Persistent 

peripheral stimuli or damaged primary afferents trigger a cascade of 

events that increase the efficacy of glutamatergic neurotransmission in 

the spinal cord, a phenomenon known as central sensitisation. A key 

molecular mechanism of central sensitisation is differential sensitisation 

of AMPA receptors and NMDA receptors and enhanced ion channel 

activity. Central sensitisation is thought to underlie the progression 

of chronic pain, including the effects of allodynia and hyperalgesia.66 

Antagonists of ionotropic glutamate receptors, including NMDA, AMPA 

and kainate receptor antagonists, decrease nociceptive transmission,67 

but have a narrow therapeutic window due to their side effects. However, 

the development of selective mGluR ligands has provided important 

tools for further investigation of the role of glutamate in the modulation 

and control of chronic pain processing.68

Elevated glutamatergic neurotransmission in the CNS is observed 

during neuropathic pain, which is accompanied by lower effectiveness 

of opioid anti-nociceptive drugs.69 Modulation of glutamatergic system 

activity could be beneficial for the potentiation of an analgesic effect of 

opioid drugs in neuropathic pain, and possibly for other drugs used in 

the treatment of neuropathic pain, such as antidepressants. Recently, it 

was shown that opioid-induced hyperalgesia in neuropathic pain could 

be inhibited by upregulation of spinal glutamate transporter-1 (GLT-1) 

expression.70 Moreover, the effect of other drugs used in neuropathic 

pain therapy could be potentiated by the use of mGluR ligands and/or 

modulators of EAATs. Recently, it has been demonstrated that the dorsal 

striatal mGluR7, by modulating glutamate and GABA release, may play 

an important role in the supraspinal pathways involved in the control 

of pain.71 The stimulation of mGluR7 in the dorsal striatum decreased 

glutamate levels in both control and neuropathic rats, while it inversely 

modulated the pain and neural activity of the rostral ventromedial 

medulla and dorsal reticular nucleus. The opposite effects of mGluR7 

stimulation in normal and neuropathic pain conditions was thus likely 

associated with the involvement of different pathways from the dorsal 

striatum to dorsal reticular nucleus and rostral ventromedial medulla. 

In control rats, the mGluR7 stimulation involves the indirect pathway 

of the basal ganglia, whereas in the neuropathic conditions, the direct 

pathway of the basal ganglia. Therefore, mGluR7 in the dorsal striatum in 

neuropathic conditions functions as an ‘emergency brake’ and reduces 

pain responses (and neural hyperactivation in the rostral ventromedial 

medulla and dorsal reticular nucleus) by the direct pathway, the activity 

of which is likely enhanced in pathological pain conditions.

Cognitive impairment and dementia
Mild cognitive impairment (MCI) and dementia are common non-motor 

symptoms in PD.72,73 MCI is common in PD, even in early stages of the 

disease; about 20% of patients with PD meet the criteria for MCI at the 

time of diagnosis, and MCI is strongly associated with a progression to 

dementia.74 Patients with PD have an approximately sixfold increased 

risk for developing dementia compared with neurologically healthy 

elderly individuals.75 The prevalence of dementia in PD is around  

25–30%,76 but up to 80% of patients with PD will progress to dementia 

after 15–20 years.77,78 MCI presents as a difficulty in recalling facts, 

finding words, and concentrating, while dementia presents as severe 

problems in thinking and memory that interfere with the ability to 

undertake daily activities.72,73

Given the heterogeneous neuropathological and neuropsychological 

nature of cognitive deficits, it has been hypothesised that there are two 

independent, partially overlapping syndromes in PD:

• a frontal-striatal network dysfunction present at the early stage of the 

disease, which is dopamine-modulated, leading to deficits in working 

memory, attention, planning and response inhibition, and responds to 

dopaminergic therapy; and 

• an additional, more posterior cortical degeneration, which is 

associated with cholinergic loss and wherever present would lead to 

dementia, responding better to cholinergic therapy.79,80

Specific brain circuits are believed to be involved in the development 

of MCI in patients with PD.72 Impairments in executive functions may 

be attributed to failure in the frontal-striatal basal ganglia circuits, 

known to be affected in PD.72 Visuospatial and memory deficits, in 

contrast, are thought to arise from a decline in posterior cortical 

functioning.72 Decreased activity in neuronal circuits connecting the 

thalamus and the cortex results in reduced glutamate input to specific 

frontal cortical areas.34

Glutamate is involved in most, if not all, aspects of cognition and 

higher mental functions.2 Decreases in cortical glutamate, together 

with decreased striatal dopamine availability,81 may underlie the 

mechanisms of decline in frontal-cortex-based cognitive functions, 

such as in PD. Glutamate has an extensive role in memory encoding 

and maintenance.82 In some specific areas of the brain (such as 

hippocampal regions), the activation of NMDA receptors is crucial for 

long-term potentiation, a cellular correlate of learning and memory 

formation.82 Problems with learning and memory can arise due to 

reduced NMDA receptor system function as the brain ages, resulting in 

an excess of extracellular glutamate that can lead to severe cognitive 

impairments and psychosis.83

Glutamate excitotoxicity at NMDA receptors may be involved 

in dementia observed in patients with PD. The potential role of 

dysregulated glutamate in cognitive impairment is supported by 

studies of NMDA receptor antagonists (such as memantine), which 

reduce glutamatergic signalling.84 

Mood disorders
Mood disorders, particularly depression and anxiety, are common in PD 

and can pre-date motor symptoms. Mood disorders have a significant 

negative impact on a patient’s prognosis and quality of life.85 Around 35% 

of patients with PD have clinically significant depressive symptoms and 

approximately 17% have a concurrent diagnosis of major depressive 

disorder, although incidences vary between studies.86 The prevalence of 

anxiety disorders in PD is about 31%.87
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The pre-motor symptoms of depression and anxiety are thought to 

relate to brainstem monoamine pathology affecting the locus coeruleus 

and dorsal raphe nucleus at an early stage, before the occurrence of 

dopamine cell loss in the SNc.88,89 Depression and anxiety, as observed 

in later PD, probably reflect multiple neurotransmitter changes (notably 

monoamines such dopamine, noradrenaline, and serotonin) and quite 

recently, preclinical and clinical studies have also provided evidence of 

the involvement of glutamatergic and GABAergic transmission.64,90,91

Perturbation of the glutamatergic system is considered to be at 

least partially involved in the synaptic abnormalities found in mood 

disorders,92 particularly a deficit of glutamate clearance at the synaptic 

space.93 Proof-of-concept regarding the involvement of the glutamatergic 

system in mood disorders was based on clinical data with ketamine, an 

NMDA antagonist found to exert a rapid antidepressant effect in patients 

with depression,94 thus moving from the monoamine hypothesis to the 

neuroplasticity hypothesis of mood disorders, integrating glutamatergic 

signalling, gene expression, neurotrophic mechanisms, neurogenesis, 

and synaptic plasticity.95,96

Several findings from postmortem studies are in accordance with the 

evidence of glutamate abnormalities in mood disorders.97 Moreover, 

magnetic resonance spectroscopy studies in patients with depression 

found increased levels of glutamate and/or glutamine – the metabolite 

and precursor of glutamate – in the basal ganglia.98,99 In particular, the 

increase in glutamine in putamen is of interest in view of the postulated 

role of the basal ganglia in the neuropsychology of depression, and is 

consistent with elevated activity in the descending cortical glutamatergic 

innervation to the putamen. Striatum, a reward-related brain area, is 

enriched with glutamatergic afferents and glutamate receptors and 

is involved in depression-related behaviour such as anhedonia. In 

preclinical depression models,100 striatal mGlu5 receptor expression was 

increased, leading to hyperactivity of mGlu5 receptor signalling, which 

thereby contributes to depressive-like symptoms that are prevented by 

mGluR5 antagonists.101–103

It is worth mentioning that episodes of hypomania/mania have been 

reported in patients with PD, due to hyperstimulation of the dopaminergic 

system.104,105 There is also evidence that the limbic target areas of the 

ventral frontal cortex show increased neuronal activity when patients 

are in the manic state.106 Since these projections are glutamatergic, 

mania-related overactivity may be suggestive of excessive activation of 

glutamatergic cortico-limbic pathways. Indeed, mood stabilisers, such 

as lithium and anticonvulsant voltage-gated Na+/Ca2+ channel blockers, 

are effective in treating symptoms of both depression and mania, and 

appear to attenuate glutamatergic functions by reducing glutamate 

release, postsynaptic excitability and intracellular signalling downstream 

from glutamate receptors.107

Glutamate as a potential target for Parkinson’s 
disease pharmacotherapy
Glutamate is implicated in various aspects of PD – from motor and non-

motor symptoms, to treatment-related complications and even to its 

pathogenesis.1,3,64 Consequently, the glutamatergic system is a logical 

target for pharmacotherapies in PD.108 This section summarises the 

evidence for whether the action of drugs on the glutamatergic system 

has translated into a clinical effect.

Traditional pharmacotherapies used in the early stages of PD aim 

to increase nigrostriatal dopaminergic neurotransmission, thereby 

preventing glutamatergic overstimulation of the basal ganglia output 

nuclei by the subthalamic nucleus. Such therapies include levodopa, 

dopamine agonists, and drugs that inhibit the breakdown of dopamine 

by monoamine oxidase B (MAO-B) or the breakdown of levodopa by 

catechol-O-methyltransferase (COMT).109

However, as a result of striatal dopaminergic denervation, the 

glutamatergic projections from the subthalamic nucleus to the basal 

ganglia output nuclei become overactive with reduced regulation of 

glutamate receptors. The resultant excessive excitation by glutamate 

through the basal ganglia circuitry can be toxic to any remaining 

dopaminergic neurons, leading to PD motor symptom exacerbation 

and impaired output to cortical regions (non-motor symptoms).34,37 

In addition, dopamine-enhancing treatment with levodopa induces 

severe motor complications such as motor fluctuations (wearing off) 

and dyskinesia, where abnormal glutamate transmission plays an 

important role.43–47

A number of pharmacotherapies are available or are being tested in clinical 

trials that directly target the glutamatergic system in PD.39,108,110–112 Such drugs 

may act on different sites or processes within the tripartite glutamatergic 

synapse, including glutamate receptors, glutamate release and glutamate 

uptake. These targets and agents are discussed in more detail below.

Modulation of glutamate receptors
Effect on motor symptoms and levodopa-induced dyskinesia
NMDA receptor antagonists block NMDA receptor activity, thereby 

reducing NMDA receptor overstimulation by glutamate, and preventing 

excitotoxicity.8,38,110,111 Amantadine is a nonselective NMDA antagonist 

currently in clinical use to treat LID; however, it is associated with side 

effects including confusion and visual hallucinations.111 Longer-acting 

formulations such as amantadine extended release capsules (former 

ADS-5102), may be able to improve the side-effect profile by reducing 

night-time drug levels; phase III studies have shown consistent and 

long-lasting reductions in LIDs.113,114 Moreover, in small phase II/III studies, 

NMDA receptor antagonists such as dextromethorphan/quinidine (a 

combination drug) and memantine have shown some clinical benefits 

on LID (decreased severity/peak dyskinesia and reduced time with 

dyskinesia, respectively).112,115

Antagonists that block only the NR2B subtype of NMDA receptor are 

also under investigation; preliminary clinical results are suggestive of a 

benefit on dyskinesia.116

In contrast, AMPA receptor antagonists such as perampanel have not 

shown a consistent clinical benefit in PD and are no longer being pursued 

as a therapy to treat motor symptoms.117,118

mGluRs have an indirect modulating effect on glutamatergic pathways. 

The mGluR5 subtype of group I receptor is of particular interest in 

the treatment of PD since it is functionally connected to both D2 and 

NMDA receptors, and is highly expressed in the basal ganglia.119 

mGluR5 appears to amplify the effects of NMDA receptor stimulation, 

while NMDA receptors may amplify the effects of mGluR5 activity – a 

reciprocal positive feedback interaction that could contribute to NMDA-

receptor induced excitotoxicity.120,121 Although preliminary clinical results 

are suggestive of a benefit of mGluR5 negative allosteric modulators on 

dyskinesia, there are currently no known plans for future studies (e.g., of 

mavoglurant or dipraglurant) in PD.111

At the striato-pallidal and subthalamopallidal synapses, mGluR4 

activation reduces GABA and glutamate release in both pallidal segments 
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and is predicted to modulate the overall activity of the overactive indirect 

pathway in PD.122 At the corticostriatal synapses, mGluR4 decreases 

excitatory transmission from the cortex. Foliglurax, a mGluR4-positive 

allosteric modulator, alleviates motor symptoms and LID in PD primate 

models, demonstrated good safety and tolerability in phase I studies and 

is now being assessed in patients with PD in a phase II study.123

Effect on non-motor symptoms
Preclinical studies have shown that NMDA antagonists were effective 

in models of pain induced by inflammation, tissue and nerve injury and 

visceral nociception. Further, clinical studies in patients with neuropathic 

pain have found that the NMDA receptor antagonist ketamine can be 

used to control neuropathic pain.124 In short-term clinical trials in mood 

disorders, ketamine and the NR2B receptor antagonist, traxoprodil (former 

CP-101,606), have also shown benefits in patients with depression.125,126 

However, NMDA antagonists have not yet been tested in patients with PD 

and depression or pain.

With regard to cognition, memantine, an NMDA receptor antagonist, has 

been shown to reduce the rate of deterioration among patients with PD 

dementia.127 However, there is some disagreement between studies.128,129 

In a very recent meta-analysis, memantine was revealed to have some 

beneficial effects on attention, processing speed and executive functions 

in patients with PD and cognitive impairment, dementia and dementia 

with Lewy bodies.130 However, considering the limitations of the study, the 

authors concluded that the results did not sufficiently support the use of 

memantine as treatment for PD cognitive impairment and PD dementia.

An observational study in patients with PD showed that amantadine, 

another NMDA receptor antagonist, may delay the onset of PD dementia 

and attenuate its severity.131

Inhibition of glutamate release
Effect on motor symptoms and levodopa-induced dyskinesia
As described above, in response to an action potential, voltage-gated 

Na+ channels on the presynaptic neuron open to allow the passage 

of Na+ into the neuron. The resulting cell membrane depolarisation 

causes an influx of Ca2+ through voltage-gated Ca2+ channels, which 

stimulates vesicles to fuse with the membrane, thereby releasing 

glutamate into the synaptic cleft.

Both Na+ and Ca2+ channels are targets for pharmacotherapy. Agents 

that block voltage-gated Na+ channels and agents that block voltage-

gated Ca2+ channels may indirectly or directly inhibit the presynaptic 

release of glutamate, respectively.132,133 Safinamide, a drug that 

reduces the abnormal glutamate release through use-dependent 

Na+ channel blockade134 and inhibits MAO-B, has shown in add-on to 

levodopa a clinical benefit by reducing ‘off’ time with no worsening 

of troublesome dyskinesia likely due to its anti-glutamatergic 

activity.104,135–137 Zonisamide, a Na+ channel blocker and weak MAO-B 

inhibitor, when added to levodopa therapy was found to be beneficial 

in treating motor symptoms in Japanese patients with PD.138

Effect on non-motor symptoms
In open-label studies and in post hoc analyses, agents that block voltage-

gated Na+ and Ca2+ channels, thereby inhibiting glutamate release, have 

shown promise for the treatment of peripheral and central neuropathies 

and mood disorders, cancer pain, and HIV-associated pain.125,139 

Safinamide has been shown to improve PD-related chronic pain and 

mood fluctuations.140–142

Modulation of glutamate uptake
Dysfunctions in glutamate uptake due to downregulation of the high-

affinity astrocytic glutamate transporters (EAAT2/GLT-1 and EAAT1) 

results in increased availability of glutamate in the synaptic cleft.5 

Preclinical studies have provided some insight into how elevated 

glutamate levels in specific brain regions may account for motor 

symptoms, depression- and anxiety-like behaviour, and pain in animal 

models.143,144 These symptoms have been prevented and/or reversed by 

the GLT-1 inducer, ceftriaxone.145–148

Concluding remarks
Glutamatergic neurotransmission in the basal ganglia is essential for the 

normal control of movement, as well as for pain, cognition and mood. 

When the striatum receives excitatory glutamatergic input from the 

cerebral cortex, two pathways are activated whose co-ordinated action 

enables normal motor activity.

In PD, however, the degeneration of nigrostriatal dopaminergic 

neurons causes chain reactions that ultimately result in a 

glutamatergic overstimulation of the basal ganglia output nuclei and 

the SNc. Overstimulation of the basal ganglia output nuclei leads to 

parkinsonian motor symptoms, in particular, hypokinesia, bradykinesia 

and rigidity. Glutamate overactivity may contribute to the emergence 

of LID, as well as non-motor symptoms such as pain, cognitive 

impairment and depression. In addition, overstimulation of the SNc 

can lead to excitotoxicity, which might play a role in the pathogenesis 

and progression of PD.

Research into glutamate signalling in the basal ganglia is revealing a 

complex and interconnected network involving cross-talk between 

glutamate and dopamine transmission. The knowledge of these 

interactions will enable to develop compounds that can fine tune 

dopaminergic and non-dopaminergic transmission, leading to better 

treatments for PD. Thus, glutamatergic neurotransmission is a potential 

focus for pharmacotherapy in PD. A number of drugs have glutamate-

related targets and these therapies have the potential to improve both 

motor and non-motor symptoms of PD. q
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