

touchSATELLITE SYMPOSIUM

Seeing a difference in Neuromyelitis Optica Spectrum Disorder: integrating novel strategies into care

NEUROLOGY®

touchSATELLITE SYMPOSIUM at MSVirtual2020

13 September 2020, 08.00–09.00 EDT

Disclaimer

Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions.

The presenting faculty have been advised by touchIME to ensure that they disclose any such references made to unlabelled or unapproved use.

No endorsement by touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities.

touchIME accepts no responsibility for errors or omissions.

Prof. Kazuo Fujihara

Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine, Fukushima, Japan

Prof. Jackie Palace

Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK

Prof. Sean Pittock

Center for Multiple Sclerosis and Autoimmune Neurology, and Neuroimmunology Research Laboratory, Mayo Clinic, Rochester, MN, USA

Disclosures

Prof. Kazuo Fujihara	<i>Consultant/advisory boards:</i> Alexion Pharmaceuticals, Asahi Kasei, Biogen, Chugai Pharmaceutical Co., Novartis, Mitsubishi Tanable, Takeda, Teijin Limited, Viela Bio	
Prof. Jackie Palace	<i>Grants/research support:</i> Merck Serono, Myware, Sparks (Great Ormond Street Hospital's Charity); <i>Consultant/advisory boards:</i> Amplo, Alexion Pharmaceuticals, Argenx, Blueprint Medicines, Merck, Mitsubishi, Roche, Viela Bio, Vitaccess, UCB	
Prof. Sean Pittock	<i>Grants/personal fees/other:</i> Alexion Pharmaceuticals, Astellas, Autoimmune Encephalitis Alliance, Grifols, MedImmune, UCB <i>Patents issued</i> : Patent # 8,889,102 (Application # 12-678350, Neuromyelitis Optica autoantibodies as a marker for neoplasia); Patent# 9,891,219B2 (Application # 12-573942, Methods for treating Neuromyelitis Optica [NMO] by administration of eculizumab to an individual that is aquaporin-4 (AQP4)-IgG autoantibody positive)	

•

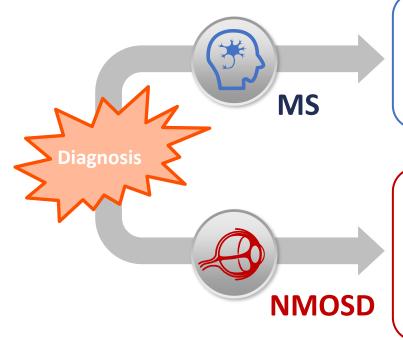
Time	Presentation	Speaker
08:00	Introduction and welcome	Prof. Jackie Palace
08:05	Does early detection reduce the burden of NMOSD?	Prof. Kazuo Fujihara
08:15	How do novel therapies work to reduce relapse?	Prof. Sean Pittock
08:30	In the clinic with NMOSD: How can we translate the recent data to patient care? Case-based discussion	Presenter: Prof. Jackie Palace Commentators: Profs. Sean Pittock and Kazuo Fujihara
08.45	Live Q&A	All faculty
08.55	Summary and close	Prof. Jackie Palace

Outline strategies for early and accurate diagnosis of neuromyelitis optica spectrum disorder (NMOSD)

Describe how novel treatment options target the pathophysiology of NMOSD to prevent relapse

Assess recent phase III results for novel therapies and how these may impact treatment decisions in NMOSD

Does early detection reduce the burden of NMOSD?


Prof. Kazuo Fujihara

Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine, Fukushima, Japan

Treatment pathway for MS vs NMOSD

Disease-modifying therapies, including:^{1,2}

 Interferon-β, glatiramer acetate, teriflunomide, cladribine, dimethyl fumarate, fingolimod, natalizumab, alemtuzumab, ocrelizumab, etc.

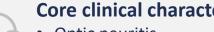
Agents in red can exacerbate NMOSD

Acute and preventive treatment, including:³

- High-dose steroids, plasma exchange
- Azathioprine, mycophenolate mofetil, rituximab, methotrexate

Novel agents

- Eculizumab
- Inebilizumab
- Satralizumab



MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder.

1. Montalban X, et al. Mult Scler. 2018;24:96–120. 2. AAN Practice Guideline Recommendations. Available at www.aan.com/GuidelineS/home/GuidelineDetail/898 (accessed July 2020).

3. Kessler RA, et al. Curr Treat Options Neurol. 2016;18:2.

Diagnosing NMOSD

Core clinical characteristics

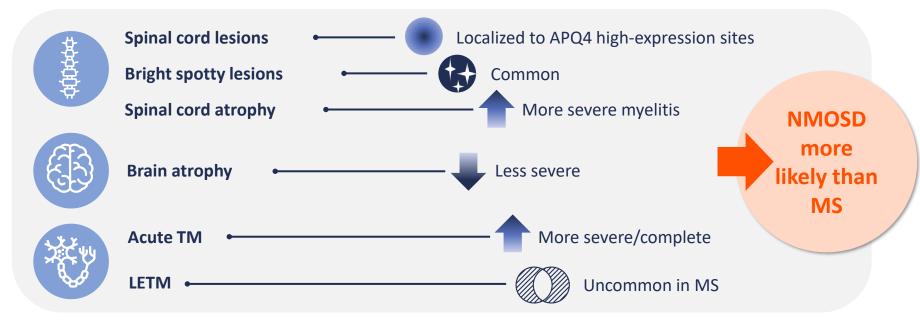
- Optic neuritis
- Acute myelitis
- Area postrema syndrome
- Acute brainstem syndrome
- Narcolepsy/acute diencephalic clinical syndrome
- Symptomatic cerebral syndrome

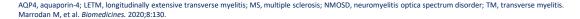
Cell-based aquaporin 4 (AQP4)-IgG test

NMOSD with AQP4-IgG

- 1 core characteristic
- Positive APQ4-IgG test

NMOSD without AQP4-IgG/AQP4-IgG status unknown


- \geq 2 different, separated, core characteristics
- Optic neuritis, acute myelitis with LETM, or APS
- Negative/unavailable AQP4-lgG test
- Additional MRI requirements: LETM >3 VS, etc.



Differentiating NMOSD from MS

Symptom magnitude and disease history can help differentiate NMOSD from MS

• Correct diagnosis is important for therapeutic choice and to reduce treatment failures and long-term disability

Red flags: atypical findings in NMOSD

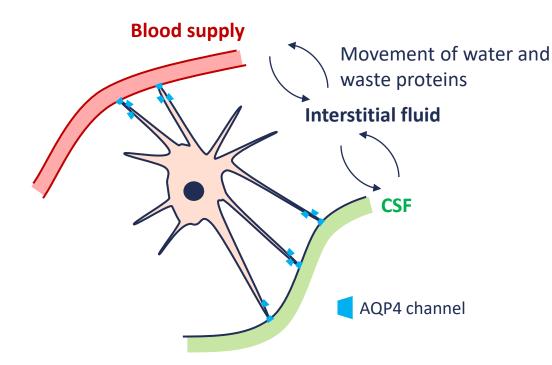
Clinical/laboratory findings

- Progressive overall clinical course
- <4 hours or >4 weeks to nadir of attack
- Partial transverse myelitis
- CSF oligoclonal bands

- Suspected sarcoidosis
- Cancer

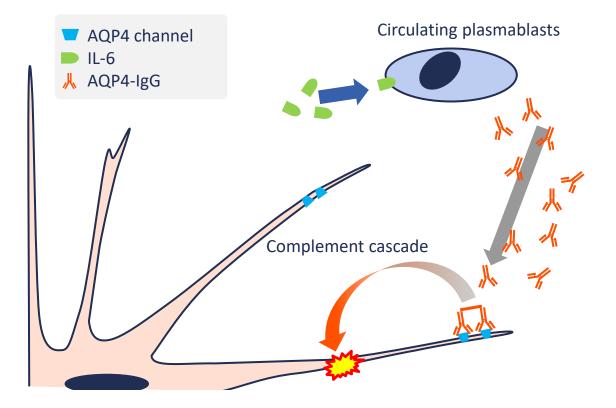
Imaging characteristics

Brain lesions


- Perpendicular to lateral ventricular surface
- Adjacent to lateral ventricle in inferior temporal lobe
- Juxtacortical with subcortical U-fibres
- Cortical lesions
- Persistent gadolinium enhancement

Spinal cord lesions

- <3 complete vertebral segments
- Predominantly in peripheral cord
- Indistinct signal change on T2 sequences


AQP4 in the healthy adult brain^{1,2}

- AQP4 is a water channel on astrocyte endfeet
- Maintains water homeostasis
- Helps mediate waste protein clearance
- Target antigen in NMOSD

Pathogenesis of AQP4-IgG-positive NMOSD^{1,2}

- IL-6 supports plasmablasts to promote AQP4-IgG release
- AQP4-IgG binds with AQP4 and activates the complement cascade
- Lytic damage to astrocytes and associated inflammation

Other biomarker candidates in NMOSD

Th17-related cytokines¹

- Levels of Th17 cells increased in NMOSD
- IL-6, IL-17 higher in NMOSD than MS
- Th17 cells and cytokines may be therapeutic targets

CXCL1, CXCL5, and CXCL7 in CSF³

- Neutrophil-related chemokines elevated in NMOSD but not MS
- Not correlated with clinical severity
- Potential for diagnostic use

GFAP and NfL²

- Increased in NMOSD
- CSF levels correlated with serum levels
- Likely to be biomarkers of disease activity
- Serum GFAP:NfL higher in NMOSD than MS

Exosomal microRNAs⁴

- Hsa-miR-122-3p and hsa-miR-200a-5p correlated with disease severity in NMOSD
- Potential as biomarkers for relapsing NMOSD

CSF, cerebrospinal fluid; CXCL, chemokine; GFAP, glial fibrillary acidic protein; IL, interleukin; MS, multiple sclerosis; NfL, neurofilament light chain; NMOSD, neuromyelitis optica spectrum disorder; RNA, ribonucleic acid; Th, T-helper.

NEUROLOGY®

1. Hou MM, et al. Int Immunopharmacol. 2019;75:105793. 2. Watanabe M, et al. Neurology. 2019;93:e1299–1311. 3. Liu Z, et al. Ann Clin Trans Neurol 2020; doi: 10.1002/acn3.51094. 4. Chen C, et al. Front Immunol. 2020;11:1064

Phenotypic subgroups in AQP4-IgG-negative NMOSD

Principal component analysis of 36 clinico-radiologic parameters from 41 patients, validated in 45 patients

3 phenotypic subgroups

MS-like subgroup

- Dawson fingers
- Lesion touching lateral ventricle body
- ≥4 brain lesions
- Inferior temporal lesion
- Unmatched CSF oligoclonal bands
- Significantly higher myoinositol and formate than NMOSD-like subgroup

NMOSD-like subgroup

- Fulfils 2015 NMOSD criteria
- Predominant central cord involvement
- Simultaneous optic neuritis and transverse myelitis
- Tumefactive brain lesion
- EDSS ≥6 during attack

Low brain lesion subgroup

• ≤3 brain lesions

Impact on outcomes and patient QoL

Most patients had an initial diagnosis other than NMOSD

Strong negative impact on physical health

- Pain
- Bowel/bladder dysfunction

Relatively unimpaired emotional wellbeing Biggest negative factors were

- Inability to work
- Reduced QoL and sexual function
- Increased pain

Dissatisfaction with

- Treatment options
- Economic burden

Early diagnosis and detection of NMOSD activity biomarkers should allow for quicker and more accurate treatment selection

How do novel therapies work to reduce relapse?

Prof. Sean Pittock

Center for Multiple Sclerosis and Autoimmune Neurology, and Neuroimmunology Research Laboratory, Mayo Clinic, Rochester, MN, USA

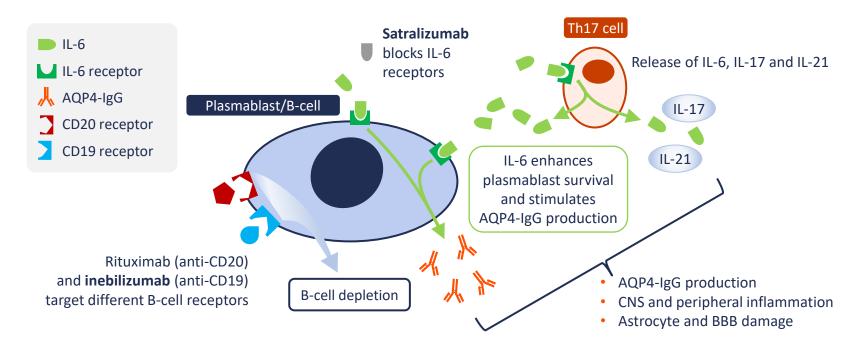
Treatment goals in NMOSD^{1,2}

NMOSD attacks require aggressive immunosuppressive therapy

Prevention of NMOSD attacks and relapse is crucial to limit damage accumulation, BUT relapse clusters and intermittent attacks are difficult to predict

Traditional approach to treatment relied on

- Immunosuppression: steroids, azathioprine, methotrexate and mycophenolate mofetil
- B-cell targeted therapy with rituximab


Novel agents target NMOSD pathophysiology

Ab, antibody; AQP4, aquaporin-4; CD19, cluster of diffentiation-19; EMA, European Medicines Agency; FDA, US Food and Drug Administration; IgG, immunoglobulin G; IL-6, interleukin-6; MAC, membrane attack complex; NMOSD, neuromyelitis optica spectrum disorder. Selmai K. Selmai L. Neurolin Veurochir Pol. 2019:53:317–326.

IL-6, plasmablasts and NMOSD pathology^{1–3}

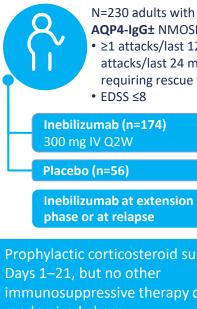
High IL-6 levels are associated with NMOSD relapse and severity of neurological disability¹

AQP4, aquaporin-4; BBB, blood–brain barrier; CD19/20, cluster of differentiation 19/20; CNS, central nervous system; IgG, immunoglobulin G; IL, interleukin; NMOSD, neuromyelitis optica spectrum disorder; Th, T-helper. 1. Barros PO, et al. *Clin Exp Immunol.* 2015;183:480–9. 2. Chihara N et al, *Proc Natl Acad Sci USA.* 2011;108:3701–6. 3. Uzawa A, et al. *Clin Exp Neuroimmunol.* 2013;4:167–72.

Novel agents: clinical trials

Fculizumab: PREVENT study (NCT01892345)¹

N=143 adults with AQP4-IgG+ NMOSD • ≥2 attacks/last 12 mo, or ≥3 attacks/last 24 mo with ≥1/last 12 mo


• FDSS <7

Eculizumab (n=96) 900 mg IV Q1W x4, then 1200 mg iv Q2W

Placebo (n=47)

Stable-dose immunosuppressive therapies allowed *except* rituximab and mitoxantrone during last 3 months before study

Inebilizumab: **N-MOmentum (NCT02200770)**²

AQP4-IgG± NMOSD • ≥1 attacks/last 12 mo, or ≥2 attacks/last 24 mo requiring rescue therapy

Inebilizumab at extension

Prophylactic corticosteroid support during immunosuppressive therapy during randomized phase

Satralizumab: SAkuraSky (NCT02028884)³ and SAkuraStar (NCT02073279)⁴

N=83 adults with AQP4-IgG± NMOSD³ ≥1 attacks/last 12 mo, and ≥2 attacks/last 24 mo • FDSS < 6.5

Satralizumab (n=41) + stable immunosuppression 120 mg SC W0, 2, 4 then Q4W

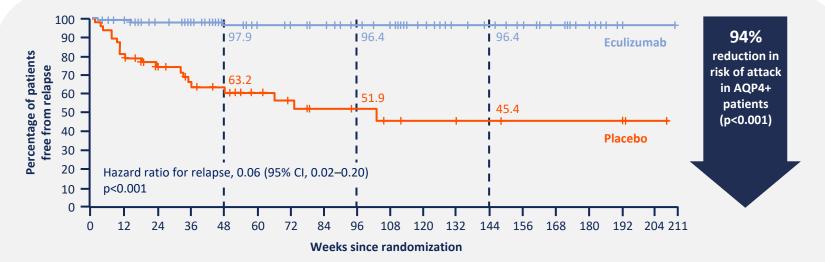
Placebo (n=42) + stable immunosuppression

N=95 adults with AQP4-IgG± NMOSD⁴ • ≥1 attacks/last 12 mo • FDSS < 6.5

Satralizumab (n=63) 120 mg SC W0, 2, 4 then Q4W

Placebo (n=32)

Satralizumab at extension phase or at relapse

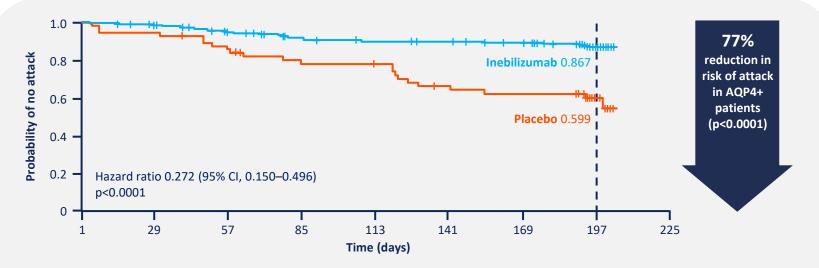

JFUROLOG

AQP4, aquaporin-4; AQP4±, AQP4 seronegative patients allowed if meeting 2006 Wingerchuk criteria for neuromyelitis optica; EDSS, expanded disability status scale; IV, intravenous; mo, months; SC, subcutaneous; Q2/4W, every 2/4 weeks; W, week.

1. Pittock SJ, et al. N Engl J Med. 2019;381:614–25. 2. Cree BAC, et al. Lancet. 2019;394:1352–63. 3. Yamamura T, et al. New Engl J Med. 2019;381:2114–24. 4. Traboulsee A. ECTRIMS Online Library. 2019; 278963:P603.

Eculizumab: effect on relapse

PREVENT study



• In 21 patients receiving eculizumab without concomitant immunosuppression, there were no relapses at 144 weeks vs 7/13 patients receiving placebo only

Inebilizumab: effect on relapse

N-MOmentum study

• Significant B-cell depletion in circulating CD20 B-cells after day 8 at all time points with inebilizumab vs placebo (p<0.0001)

Satralizumab: effect on relapse

SAkuraSky study¹

SAkuraStar study²

Pooled analysis³

 No significant difference vs placebo in AQP4 IgG-negative population (n=14) • 55% reduction in relapse vs placebo

AQP4+, aquaporin-4-positive; CI, confidence interval; IgG, immunoglobulin G. Figures reproduced with permission from: 1. Yamamura T, et al. New Engl J Med 2019;381:2114–24; 2. Traboulsee A. ECTRIMS Online Library. 2019; 278963:P603. 3. Haskova Z, et al. Invest Ophthalmol Vis Sci. 2020;61:3173.

Novel agents: safety

Eculizumab: PREVENT study ¹					
Most common AEs	Eculizumab (n=96), n (%)	Placebo (n=47), n (%)			
Upper RTI	28 (29)	6 (13)			
Headache	22 (23)	11 (23)			
Nasopharyngitis	20 (21)	9 (19)			
Nausea	16 (17)	12 (26)			
UTI	13 (14)	10 (21)			
Limb pain	11 (11)	10 (21)			

- SAEs: 26% (eculizumab) vs 28% (placebo)
- 1 related death (eculizumab) due to respiratory infection
- 2 discontinuations due to AEs (both placebo)
- No cases of meningococcal infection

Inebilizumab: N-MOmentum study ²					
Most common AEs	Inebilizumab (n=174), n (%)	Placebo (n=56), n (%)			
UTI	20 (11)	5 (9)			
Arthralgia	17 (10)	2 (4)			
IRR	16 (9)	6 (11)			
Back pain	13 (7)	2 (4)			
Headache	13 (7)	4 (7)			
Nasopharyngitis	13 (7)	6 (11)			

- SAEs: 5% (inebilizumab) vs 9% (placebo)
- No deaths during randomized controlled period;
 2 deaths during extension phase (1 potentially treatment-related)
- 2 discontinuations due to AEs (inebilizumab)

Satralizumab: SAkuraSky study ³				
Most common AEs	Satralizumab (n=41), n (%)	Placebo (n=42) <i>,</i> n (%)		
Nasopharyngitis	10 (24)	7 (17)		
Upper RTI	10 (24)	6 (14)		
Headache	10 (24)	4 (10)		
UTI	7 (17)	7 (17)		
Constipation	2 (5)	7 (17)		

• SAEs: 17% (satralizumab) vs 21% (placebo)

- No deaths or anaphylactic reactions
- 8 discontinuations due to AEs
 (3 satralizumab and 5 placebo placebo)
- IRRs more frequent with satralizumab than in the placebo group (12% vs 5%)

Summary

Availability of biomarkers for diagnosis and to track disease state gives greater understanding of treatment needs

Preventing attacks prevents disability

Novel agents provide a more targeted way to prevent NMOSD attacks than relatively undirected immunosuppression

 Phase III trials with eculizumab, inebilizumab and satralizumab have shown reduction in likelihood of relapses and good safety profile

In the clinic with NMOSD: How can we translate the recent data to patient care?

Prof. Jackie Palace

Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK

Case: female with AQP4-IgG-positive NMOSD

- 35-year-old woman in full-time employment
- 2 school-age children
- Onset attack of transverse myelitis 12 months ago
- Positive serum AQP4 antibodies
- TPMT levels low

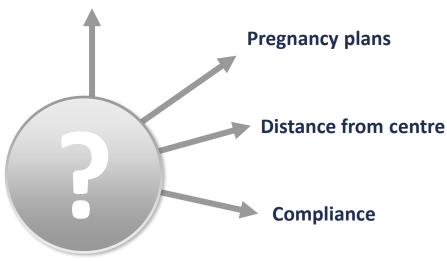

90% recovery with 5 days IV MPred

- On prednisolone 10 mg OD maintenance, relapse-free since onset
- She feels that the prednisolone is making her anxious and wants to discontinue it

Case: female with AQP4-IgG-positive NMOSD

Medical considerations for management

Armamentarium


- Prednisolone
- Azathioprine
- Mycophenolate
- MTX/cyclosporin/tacrolimus/etc.
- Rituximab
- MS DMTs
- Eculizumab
- Inebilizumab
- Satralizumab

Case: female with AQP4-IgG-positive NMOSD

Patient lifestyle considerations for management

Working/busy parent/student

Armamentarium

- Prednisolone
- Azathioprine
- Mycophenolate
- MTX/cyclosporin/tacrolimus/etc.
- Rituximab
- MS DMTs
- Eculizumab
- Inebilizumab
- Satralizumab

Summary: female with AQP4-IgG-positive NMOSD

- 35-year-old woman in full-time employment
- 2 school-age children
- TPMT levels low
- She wants to discontinue prednisolone

- What would make you consider switching to a different drug or class?
- What if she were AQP4-IgG-negative?
- What if she were MOG-lgG-positive?

Armamentarium

- Prednisolone
- Azathioprine
- Mycophenolate
- MTX/cyclosporin/tacrolimus/etc.
- Rituximab
- MS DMTs
- Eculizumab
- Inebilizumab
- Satralizumab

