touchEXPERT OPINIONS®

Disease-modifying therapies in multiple sclerosis: Current perspectives on the latest data

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by touchIME[®] to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by touchIME[®] of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME[®] activities
- touchIME[®] accepts no responsibility for errors or omissions

How are new and emerging data changing the way we think about the management of multiple sclerosis?

Prof. Xavier Montalban

Director of the Multiple Sclerosis Centre of Catalonia (Cemcat)

Vall d'Hebron University Hospital and Research Institute, Barcelona, Spain

What do long-term data with older agents tell us about symptom progression and secondary progressive multiple sclerosis?

Long-term data from platform therapies in MS

Glatiramer acetate¹

US Glatiramer Acetate Trial SC dosing, 20 µg QD **15-year** (n=100) and **20-year** (n=74) open-label extension study data

ARR: 0.25 (15 y) and 0.2 (20 y)

SPMS: 35% (15 y) and 47% (20 y)

EDSS ≥6 (patient not ambulatory) 18% (15 y) and 20.5% (20 y)

ARR, annualized relapse rate; EDSS, Expanded Disability Status Scale; EOD, every other day; INF, interferon; MS, multiple sclerosis; QD, every day; SC, subcutaneous; SPMS, secondary progressive MS; y, year.

NEUROLOGY®

1. Wynn DR. Mult Scler Int. 2019:7151685; 2. Ebers GC, et al. J Neurol Neurosurg Psychiatry. 2010;81:907–12.

Does current patient monitoring catch disease progression early enough?

Disease progression monitoring in MS

- Diagnostic MRI lacks sensitivity to grey matter neurodegeneration, and is not easily quantitative²
- Early lesion progression detection could allow therapy adjustment to prevent symptoms

Specialist neuroradiology input to MDTs for complex neurological conditions is essential for optimal patient management³

- Reduced thalamic volume⁴ and thalamic atrophy⁵ via T1-weighted MRI are endpoints for disease progression in clinical trials of neuroprotective agents
- In pediatric patients, complete baseline MRI assessment and accurate clinical and MRI monitoring during the first 2 years of disease are predictive of long-term prognosis⁶

Structural and functional changes in retinal ganglion cell layer and retinal nerve fiber layer predict long-term visual outcomes in MS⁷

MDT, multidisciplinary team; MRI, magnetic resonance imaging; MS, multiple sclerosis.

Rae-Grant A, et al. *Neurology*. 2018;90:777–88; 2. Ontaneda D, Fox RJ. *Neurotherapeutics*. 2017;14:24–34; 3. Ramsay S, et al. AAN 2021 Virtual Annual Meeting. Abstr. S2.002;
 Petracca M, et al. *Neurol Ther*. 2018;7:265–85; 5. Azevedo CJ, et al. *Ann Neurol*. 2018;83:223–34; 6. De Meo E, et al. AAN 2021 Virtual Annual Meeting. Abstr. S28.005;
 Galetta SL, et al. AAN 2021 Virtual Annual Meeting. Abstr. P15.096.

How effective are newer disease-modifying therapies for long-term treatment?

Long-term experience with highly effective DMTs

Alemtuzumab¹

CARE-MS II (RRMS) Other DMTs permitted in OLE 9-year follow-up • 41% of ALE-treated pts did

not receive DMTs after Y2

• ARR 0.19 years 3–9

• 68% stable/ improved EDSS

• 69% free of disease activity on MRI

Ocrelizumab²

OPERA OLE (RMS) OLE following 2-year study 6-year follow-up • ARR 0.13–0.05 during years 3–6

- (OLE years 1–4) • 19.2% with
- 24-week CDP at year 6 (OLE year 4)

Ofatumumab³

APOLITOS (RRMS) 48-week follow-up to 24-week phase II study • ARR 0.081

Reduced ARR and lesions in patients who switched to OFA from placebo in initial study

Ublituximab⁴

ULTIMATE I and II (RMS) 96-week phase III study • ARR 0.076 and

 Mean 0.016 and 0.009 Gd+ T1 lesions

Significantly reduced ARR and lesions with ublituximab vs teriflunomide

Sustained responses and low rates of progression/disability after multiple years' therapy with highly effective DMTs

What do we know about switching to highly effective disease-modifying therapies, and when should patients switch?

Switching to highly effective DMTs

• The decision to switch to a highly effective DMT should be discussed with patients

 Additional or more intensive patient monitoring may prompt discussions should pre-symptomatic lesions be detected

Alemtuzumab¹

- 282 pts in CARE-MS I/II OLE switched to ALE from IFN β-1a
- 230 pts completed 7 years' ALE: ARR was 0.11
 68% had stable/improved EDSS

Ocrelizumab²

- Pts with sub-optimal response to prior DMT switched to OCR in the CHORDS study
- 555 pts completed 2 years' OLE: ARR was 0.046
 62% had stable EDSS
 23% had improved EDSS

Natalizumab³

- Pts who switched from NAT to high- or moderate-efficacy DMT (n=130 and n=270, respectively)
- At 2 years post-switch: No difference in ARR Moderate-efficacy group had greater risk of new T2 and Gd+ lesions, and lower risk of absence of disease activity (all p<0.05)

Switching from platform therapies to highly effective DMTs is associated with improved outcomes and few additional safety concerns

ALE, alemtuzumab; ARR, annualized relapse rate; DMT, disease-modifying therapy; EDSS, Expanded Disability Status Scale; Gd+, gadolinium enhancing; INF, interferon; NAT, natalizumab; OCR, ocrelizumab; OLE, open-label extension; pts, patients.

1. Pelletier D, et al. Mult Scl J. 2020;26(Suppl. 1):43; 2. Weinstock-Guttman B, et al. Eur J Neurol. 2020;27(Suppl. 1)43; 3. Hersh C, et al. Neurology. 2020;94(Suppl. 15):683.

Highly effective disease-modifying therapies in multiple sclerosis: What is the role of early treatment?

Prof. Eva Kubala Havrdová

Professor of Neurology

General University Hospital, Charles University, Prague, Czech Republic

Does real-world evidence support clinical trial data for highly effective disease-modifying therapies?

Real-world data for DMTs in MS

Alemtuzumab

84 Slovakian patients with RRMS, ≥2 doses¹ Mean age 37.5 years old

- EDSS score unchanged (3.5 ± 1.47 vs 3.23 ± 1.58)
- Mean ARR reduced from 0.58 ± 0.96 to 0.04 ± 0.21
- MRI progression reduced from 0.56 to 0.16

49 Croatian patients with RRMS, ≥2 doses² Mean age 33.2 years old

- ARR 1.86 in year before treatment
- ARR 0.08, 0.07, and 0.24 after
 1, 2, and 3 years, respectively;
 all p<0.001
- ARR reductions of 87–96%

Natalizumab

Long-term multinational real-world observational study in patients with RRMS who received natalizumab³

- 1,649 patients continued treatment and 1,309 discontinued after ≥1 year
- 5 years' follow-up: conversion to non-active SPMS lower with continued natalizumab than discontinuation (0.14 vs 0.2; p<0.0001)
- Patients mostly discontinued natalizumab due to anti-JCV Ab positivity (38%) or patient decision (24%)
- Natalizumab has long-term real-world effectiveness and slows RRMS disease progression

Ocrelizumab

65 patients with MS in Qatar (52 with RRMS)⁴ Mean age 38.7 years old

- Mean 3.2 infusions
- Mean number of lesions on MRI reduced from 1.27 to 0.07
- Patients older than those in the OPERA I/II studies, but with longer disease duration

100 patients with MS in Colorado (82% RRMS)⁵ Mean age 44.3 years old

- Over 2 years, 2% experienced clinical relapse, 1% an enhancing lesion, and 6% a new T2 lesion
- 20% discontinued treatment by 24 months
- Ocrelizumab safe and effective for MS treatment in the real-world setting

Ab, antibody; ARR, annualized relapse rate; DMT, disease-modifying therapy; EDSS, Expanded Disability Status Scale; JCV, John Cunningham virus; MRI, magnetic resonance imaging; MS, multiple sclerosis; RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis.

1. Kantorová E, et al. Mult Scler J. 2020;26(1 Suppl.):28; 2. Habek M, et al. Eur J Neurol. 2020;27(Suppl. 1):671; 3. Kappos L, et al. AAN 2021 Virtual Annual Meeting. Abstr. P15.078;

4. Yousuf W, et al. AAN 2021 Virtual Annual Meeting. Abstr. P15.070; 5. Vollmer B, et al. AAN 2021 Virtual Annual Meeting. Abstr. P15.217.

What are the risks and benefits of earlier use of highly effective disease-modifying therapies?

Benefits and risks of early treatment with highly effective DMTs

AAN guidelines for DMTs allow for their use up front in RRMS, instead of escalating from less effective therapies¹

Highly effective DMTs are associated with lower levels of brain atrophy and brain volume change than IFN- β 1a²

Further data are needed to support this strategy from prospectively randomized studies³

- Limited prognostic markers available to identify suitable patients
- Longer-term efficacy and safety data needed for newer therapies

AAN, American Academy of Neurology; DMT, disease-modifying therapy; IFN, interferon; RRMS, relapsing-remitting multiple sclerosis. 1. Rae-Grant A, et al. *Neurology*. 2018;90:777–88; 2. Andravizou A, et al. *Autoimmun Highlights*. 2019;10:7; 3. Corboy JR, et al. *Neurology*. 2018;90:1106–12. What do we know about early use of highly effective disease-modifying therapies in relapsing-remitting multiple sclerosis?

Early DMT use in RRMS

Significantly lower EDSS increase after 5 years with EIT vs ESC (mean 0.3 vs 1.2; p<0.001)

- Better long-term outcomes with EIT, in a cohort of patients with poorer prognostic factors
- 58 patients on ESC stepped up to DMT after a median 2.4 years
- Relapse reduction rate with DMTs similar first-line or as escalation therapy

Median time to sustained accumulation of disability by initial treatment strategy

Significantly lower CDP at year 5 in continuous ocrelizumab group vs switch (16% vs 21.3%; p=0.014)

- All pts had near complete and sustained suppression of new brain MRI lesion activity from years 3–5
- Continuous ocrelizumab associated with lower whole brain volume loss (-1.87% vs -2.15% at year 5; p<0.01)

CI, confidence interval; DMT, disease-modifying therapy; CDP, confirmed disability progression; EDSS, Expanded Disability Status Scale; EIT, early intensive therapy; ESC, escalating therapy strategy; LIT, late intensive therapy; MRI, magnetic resonance imaging; pts, patients; RRMS, relapsing-remitting multiple sclerosis. 1. Harding K. et al. JAMA Neurol. 2019:76:536–41: 2. Hauser SL, et al. Neurology. 2020:95:e1854–67.

Early DMT use in RRMS

Median follow-up 7.8 years (matched cohort)

- 6 years after onset, significantly lower EDSS in EIT vs LIT (2.2 vs 2.9; p<0.0001)
- Difference in mean EDSS still apparent 10 years after onset (2.3 vs 3.5; p<0.0001)
- Time-adjusted EDSS difference of -0.98 between EIT and LIT groups across
 6- to 10-year follow-up period

CI, confidence interval; DMT, disease-modifying therapy; EDSS, Expanded Disability Status Scale; EIT, early intensive therapy; LIT, late intensive therapy; MS, multiple sclerosis; MRI, magnetic resonance imaging; pts, patients; RRMS, relapsing-remitting multiple sclerosis. 1. He A. et al. *Lancet Neurol.* 2020;19:307–16.

What do we know about long-term safety with highly effective disease-modifying therapies?

Safety profile and monitoring with highly-effective DMTs¹

	Major AE profile features (clinical trials)	Further experience (extension studies/case reports)	Routine monitoring
Alemtuzumab anti-CD52 mAb	 IRRs (headache, rash, pyrexia, hypotension) Infections (URTI, UTI, viral/fungal/bacterial) Secondary autoimmune conditions and malignancies (including thyroid) 	 Similar profile after 5 years; fewer infections and thyroid conditions after 3 years 	 TSH, CBC, LFT, creatinine and urine analysis Anti-viral prophylaxis Skin and gynecologic exam
Natalizumab anti-α4 integrin mAb	 IRRs, fatigue, headache, arthralgia, flu-like symptoms, hypersensitivity reactions Infections (URTI, UTI, viral/fungal/bacterial) PML, raised liver enzymes 	 Malignancies (melanoma, CNS and T-cell lymphomas) Infections (including herpes, VZV, encephalitis and meningitis) 	 Anti-JCV Ab testing CBC and LFT Brain MRI Neutralizing Abs
Ocrelizumab anti-CD20 mAb	 IRRs, headache, nasopharyngitis Infections (URTI, UTI, pneumonia, viral/fungal/bacterial, hep B reactivation) Secondary carcinomas and melanoma 	 Late-onset neutropenia, hypogammaglobulinemia, viral infections, hep B reactivation, fulminant hepatitis, PML 	 CBC, LFT Immunoglobulin levels if severe/recurrent infections

• Real-world evidence supports the safety and efficacy profiles of highly effective DMTs^{2–6}

Ab, antibody; AE, adverse event; CBC, complete blood count; CNS, central nervous system; DMT, disease-modifying therapy; hep B, hepatitis B; IRR, infusion-related reaction; JCV, John Cunningham virus; LFT, liver function test; mAb, monoclonal antibody; MRI, magnetic resonance imaging; PML, progressive multifocal leukoencephalopathy; TSH, thyroid stimulating hormone; URTI, upper respiratory tract infection; UTI, urinary tract infection; VZV varicella zoster virus. 1. Jalkh G, et al. *Vaccines*. 2021;9:12; 2. Kantorová E, et al. *Mult Scler J*. 2020;26(1 Suppl.):28; 3. Habek M, et al. *Eur J Neurol*. 2020;27(Suppl. 1):671; 4. Kappos L, et al. AAN 2021 Virtual Annual Meeting. Abstr. P15.078; 5. Yousuf W, et al. AAN 2021 Virtual Annual Meeting. Abstr. P15.070; 6. Vollmer B, et al. AAN 2021 Virtual Annual Meeting. Abstr. P15.217.

How does immunotherapy for multiple sclerosis impact COVID-19 vaccination?

COVID-19 in patients receiving DMTs for MS

6-month single-center retrospective chart review: rates of COVID-19 varied by DMT type¹

- Natalizumab: 4%
- Rituximab: 21%
- Ocrelizumab: 10%
- Fingolimod/siponimod: 10%

Italian retrospective observational study:² increased frequency of ICU admission or death with anti-CD20 therapies (8%) compared with IFN (0%) or other therapies (5%)

 Risk factors for severe COVID-19 were: age, EDSS, male sex, and anti-CD20 treatment (vs other drugs), recent high dose steroids

How to protect pts on anti-CD20 therapy:

- Use antibodies against spike protein (bamlanivimab etc.) in the first days of SARS-CoV-2 positivity
 - Recommend vaccination to all pts with MS (with proper timing in those on anti-CD20 therapy and cell-depleting therapies)^{3,4}

Recommend to all patients with MS to adhere to all antiepidemic preventative measures³

DMT, disease-modifying therapy; EDSS, Expanded Disability Status Scale; ICU, intensive care unit; IFN, interferon; MS, multiple sclerosis; MSIS, MS Impact Scale; pts, patients. 1. Smith T, et al. AAN 2021 Virtual Annual Meeting. Abstr. P15.014; 2. Sormani MP, et al. AAN 2021 Virtual Annual Meeting. Abstr. S28.002; 3. CNMSC COVID-19 Recommendations. Available at: <u>https://cnmsc.ca/Covid19VaccineGuidance</u> (accessed May 2021); 4. Achiron A, et al. *Mult Scler*. 2021;27:864–70.

Centering the patient: Considering the needs and preferences of patients at each treatment decision-making moment

Dr Aliza B Ben-Zacharia

Assistant Professor

Mount Sinai Beth Israel Hospital, Hunter-Bellevue School of Nursing, New York, NY, USA

How important is treatment adherence in patients with multiple sclerosis?

Adherence to DMTs varies (40–90%), but has significant clinical benefits compared with non-adherence¹⁻⁴

DMT, disease-modifying therapy.

1. Bowen J, et al. Adv Ther. 2020;37:3163–77; 2. Lahdenperä S, et al. Acta Neurol Scand. 2020;142:605–12; 3. Burks J, et al. Clinicoecon Outcomes Res. 2017;9:251–60; 4. Gerber B, et al. Mult Scler Relat Disord. 2017;18:218–24; 5. Freeman L, et al. Clinicoecon Outcomes Res. 2021;13:65–75.

Which treatment-related and non-treatment-related factors influence adherence to disease-modifying therapies in patients with multiple sclerosis?

Factors affecting adherence to DMTs in MS

Female gender, comorbidities^{1,2} Patient clinical factors^{1,3,4} Treatment related Side effects³ Negative perception Practical issues relating to of efficacy and illness Acceptance of illness administration¹ Physical limitations **Relapses and symptom** Cognitive deficit progression^{2,3} Mental illness • Support Disability²

Insurance coverage, out-of-pocket costs, income^{1,2}

DMT, disease-modifying therapy; MS, multiple sclerosis.

1. Ben-Zacharia A, et al. Int J MS Care. 2018;20:287–97; 2. Li P, et al. Value Health. 2020;23:328–34; 3. Pust GEA, et al. Int J MS Care. 2020;22:219–25;

4. Kołtuniuk A, Rosińczuk J. Int J Med Sci. 2021;18:216–25.

How much do comorbidities contribute to adherence in multiple sclerosis?

Comorbidities and adherence in MS

Comorbidities increase treatment costs

 In patients with MS, mental illness comorbidities have the highest cost-of-illness and high loss of productivity¹

Patients with MS have a **high burden of depressive symptoms, low sleep quality** and **increased perception of fatigue** (one of the most disabling MS symptoms)^{2,3}

Anxiety and depression adversely impact adherence

 Acceptance of MS increases treatment adherence and is associated with fewer treatment side-effects⁴ MS, multiple sclerosis.

1. Bütepage G, et al. Mult Scler J Exp Transl Clin. 2020;6:2055217320968597; 2. Motolese F, et al. Front Neurol. 2020;11:580507;

3. Davis BE, et al. Neurol Ther. 2021;1–21. doi: 10.1007/s40120-021-00240-9; 4. Kołtuniuk A, Rosińczuk J. Int J Med Sci. 2021;18:216–25.

COVID-19 pandemic and lockdown increased the burden of mental illness comorbidities and fatigue in people with MS²

How can therapy adherence be supported in patients with multiple sclerosis?

Strategies to support DMT adherence in MS

DMT, disease-modifying therapy; MS, multiple sclerosis; QoL, quality of life.

1. Lenz F, Harms L. *Adv Ther*. 2020;37:2999–3009; 2. Evans C, et al. *BMJ Open*. 2021;11:e043930; 3. Eizaguirre MB, et al. AAN 2021 Virtual Annual Meeting. Abstract P15.059; 4. Ben-Zacharia A, et al. *Int J MS Care*. 2018;20:287–97.

How can clinicians involve patients in treatment decisions?

Shared decision-making improves adherence

Information and interpretation

MRI scans, QoL, progression, prognosis, treatment goals, relapse prevention^{1–6}

Address misconceptions About disease and treatment (internet/social media)⁴

Treatment options Rationale, benefits and risks of different DMTs⁴

Shared understanding of disease

Understanding of disease

progression and other terms with HCP,¹ access to MRI scans^{5,6}

Manage expectations Regarding prognosis and treatment⁴

Preferences and situation Route of administration, tolerance, work environment, lifestyle^{1-4,6}

Agreed treatment strategy

DMT, disease-modifying therapy; HCP, healthcare professional; MRI, magnetic resonance imaging; QoL, quality of life. 1. Celius EG, et al. Patient Pref Adherence. 2021;15:15–27; 2. Rahn AC, et al. Int J MS. 2020;22:285–93; 3. Eskyte I, et al. Mult Scler Relat Disord. 2019;27:370–7; 4. Ben-Zacharia A, et al. Int J MS Care. 2018;20:287–97; 5. Kennedy F, et al. AAN 2021 Virtual Annual Meeting. Abstract P15.231; 6. Shirani A, et al. AAN 2021 Virtual Annual Meeting. Abstract P15.232.

