touchSATELLITE SYMPOSIUM

Considering the complete picture in neuromyelitis optica spectrum disorder: Optimizing diagnosis and management to improve patient outcomes

touchSATELLITE SYMPOSIUM available on-demand at ACTRIMS Forum 2022

Prof. Sean Pittock (Chair)

Mayo Clinic Rochester, MN, USA

Dr Amy Kunchok

Cleveland Clinic Cleveland, OH, USA Prof. Dean Wingerchuk

Mayo Clinic Phoenix and Scottsdale, AZ, USA

• Disclosures

Prof. Sean Pittock	Advisory Board and panel fees from Alexion Pharmaceuticals Inc., F. Hoffmann-La Roche AG, Genentech and UCB Pharma. Consultant fees from Alexion Pharmaceuticals Inc., EUROIMMUN, MedImmune/Viela Bio (all compensation paid directly to the Mayo Clinic); Prime Therapeutics, Roche/Genentech, Sage Therapeutics, UCB Pharma (personal compensation); Astellas Pharma Inc (compensation to the Mayo Clinic and personal). Grants and research support from AEA, Alexion Pharmaceuticals Inc., Grifols, Guthy-Jackson Charitable Foundation, MedImmune/Viela Bio and National Institutes of Health (all compensation is paid directly to the Mayo Clinic).

Dr Amy Kunchok

Advisory board or panel fees from Genentech.

Prof. Dean Wingerchuk

Advisory Board or panel fees from Biogen, Genentech, Horizon Therapeutics, Mitsubishi Tanabe Pharma Corp., Roche, UCB Pharma and Viela Bio. *Grants and research support from* Alexion Pharmaceuticals Inc. and Terumo BCT Inc.

USF Health adheres to the Standards for Integrity and Independence in Accredited Continuing Education. All individuals in a position to influence content have disclosed to USF Health any financial relationship with an ineligible organization. USF Health has reviewed and mitigated all relevant financial relationships related to the content of the activity. All relevant financial relationships are listed. Individuals not listed have no relevant financial relationships.

Agenda

•

Presentation	Speaker		
Introduction and welcome	Prof. Sean Pittock		
Applying diagnostic tools to recognize patients with NMOSD	Prof. Sean Pittock and Dr Amy Kunchok		
Exploring emerging therapies to reduce relapse in NMOSD	Prof. Sean Pittock and Prof. Dean Wingerchuk		
Adopting a holistic approach to improve quality of life for patients with NMOSD	All faculty		
Summary and close	Prof. Sean Pittock		

Learning objectives

Describe the clinical manifestations of NMOSD, the typical MRI findings and differential diagnoses

Analyse the treatment options for the prevention of NMOSD attacks and their selection criteria

Determine strategies for holistic management of the broad range of symptoms experienced by patients with NMOSD

MRI, magnetic resonance imaging; NMOSD, neuromyelitis optica spectrum disorder.

Applying diagnostic tools to recognize patients with NMOSD

Prof. Sean Pittock

Mayo Clinic Rochester, MN, USA

Dr Amy Kunchok

Cleveland Clinic Cleveland, OH, USA

NMOSD, neuromyelitis optica spectrum disorder.

NMOSD, AQP4-IgG and MOGAD

NMOSD¹

AQP4-IgG +ve plus ONE of:

AND no alternative diagnosis

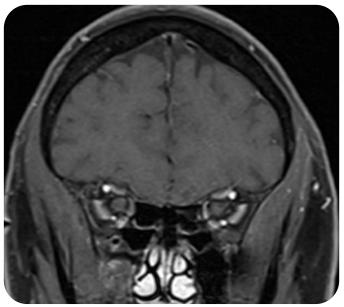
AQP4-IgG -ve/unknown, no alternative diagnosis plus ≥2 of: (but including optic neuritis, acute myelitis with LETM or APS)

AND additional MRI requirements for NMOSD

- Optic neuritis
- Acute myelitis
- Area postrema syndrome
- Acute brainstem syndrome
- Narcolepsy/acute diencephalic clinical syndrome
- Symptomatic cerebral syndrome

MOG antibody disorders²

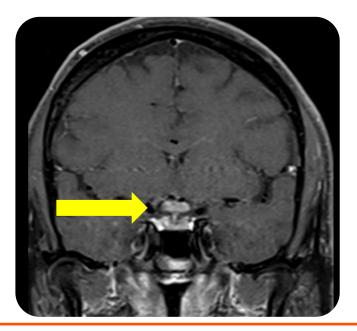
- Acute demyelinating encephalomyelitis
- Optic neuritis, including CRION
- Transverse myelitis (LETM or STM)
- Brain or brainstem syndrome compatible with demyelination


APS, area postrema syndrome; AQP4, aquaporin-4; CRION, chronic relapsing inflammatory optic neuropathy; IgG, immunoglobulin G;

LETM, longitudinally extensive transverse myelitis; MOG(AD), myelin oligodendrocyte glycoprotein (antibody disorder); MRI, magnetic resonance imaging;

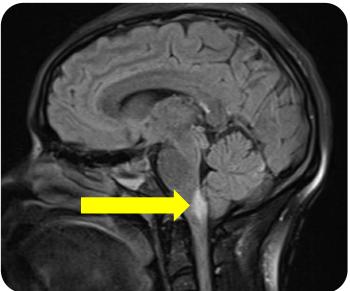
NMOSD, neuromyelitis optica spectrum disorder; STM, short-segment transverse myelitis.

1. Wingerchuk DM, et al. Neurology. 2015;85:177–89; 2. López-Chiriboga AS, et al. JAMA Neurol. 2018;75:1355–1363.

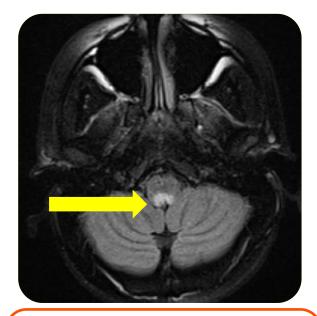

Optic neuritis

53-year-old male with prior transverse myelitis
Presented with bilateral optic neuritis with optic chiasm involvement

AQP4-IgG, aquaporin 4-immunoglobulin G; MS, multiple sclerosis. Slide provided courtesy of Dr Kunchok.



Optic neuritis often involves the posterior optic nerve
Chiasmal involvement can be seen in ~20%


- Chiasmai involvement can be seen in *20%
- Bilateral optic neuritis is more common than in MS

Area postrema syndrome

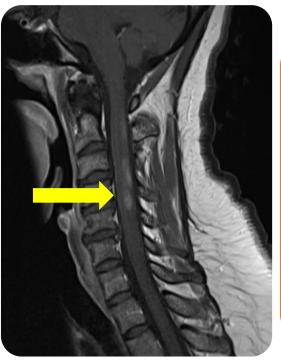
- 29-year-old African-American woman
- Persistent nausea and vomiting (2 months), labelled as gastroenteritis with two hospital presentations
- Second presentation: additional dysphagia and left-sided numbness
- AQP4-IgG +ve, coexistent ANA and SSA

Peri-ependymal lesions are common
Highly vascular, devoid of blood-brain barrier

touch

NEUROLOGY[®]

- APS: 7–10% at onset,
- 9–15% at subsequent attacks



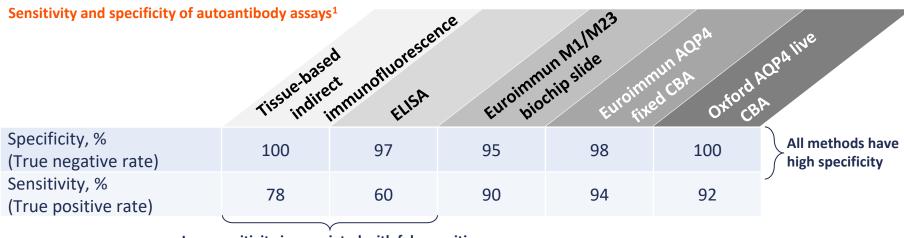
Longitudinally extensive transverse myelitis

- 49-year-old female
- Burning paresthesia in both legs that spread to the left arm followed by progressive weakness in the lower limbs and left arm
- AQP4-IgG +ve

- LETM ≥3 vertebral segments
- Central grey
 matter
- Ring enhancement
- Bright spotty T2 lesions

AQP4-IgG, aquaporin 4-immunoglobulin G; LETM, longitudinally extensive transverse myelitis. Slide provided courtesy of Dr Kunchok.

MRI lesion diagnostic characteristics


•

Lesion characteristics	NMOSD	MS)	MOGAD
Vertebral length	≥3 contiguous segments, some shorter	<3 contiguous segments, multiple		<3 contiguous segments more common than NMOSD
Location	Cervical/upper thoracic cord, central grey matter	Cervical cord, peripheral white matter		More caudal, may involve conus medullaris
Appearance	T2 bright spotty lesions T1 hypointense acute lesions, central location	Well demarcated, asymmetric T1 hypointensity rare, peripherally located		Axial T2 H-shaped hyperintensity
Post-attack	Change to short, distinct lesions or replacement by spinal cord atrophy	Complete lesion resolution possible, spinal cord atrophy rare		Lesions resolve; spinal cord atrophy rare

MOGAD, myelin oligodendrocyte glycoprotein antibody disease; MRI, magnetic resonance imaging; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder. Solomon JM, et al. *Ther Adv Neurol Disord*. 2021;14:1–18.

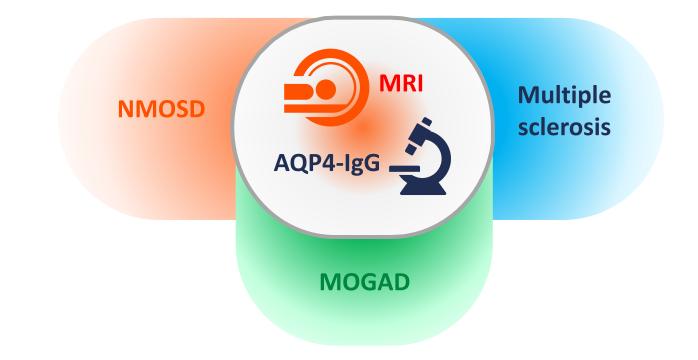
NEUROLOGY®

Serological testing: AQP4-IgG

Low sensitivity is associated with false positives

- CBAs are highly specific and have not been associated with false positives²
- Anti-AQP4 titer by ELISA is not predictive of disease course³
- Serum testing is more sensitive than CSF⁴
- CSF findings in AQP4+ NMOSD:⁵
 - Lack of oligoclonal bands vs multiple sclerosis
 - Pleocytosis with predominance of neutrophils and eosinophils

AQP4, aquaporin-4; CBA, cell-based assay; CSF, cerebrospinal fluid; ELISA, enzyme-linked immunosorbent assay; NMOSD, neuromyelitis optica spectrum disorder.


1. Prain K, et al. Front Neurol. 2019;10:1028; 2. Redenbaugh V, et al. Mult Scler J Exp Transl Clin. 2021;7:20552173211052656;

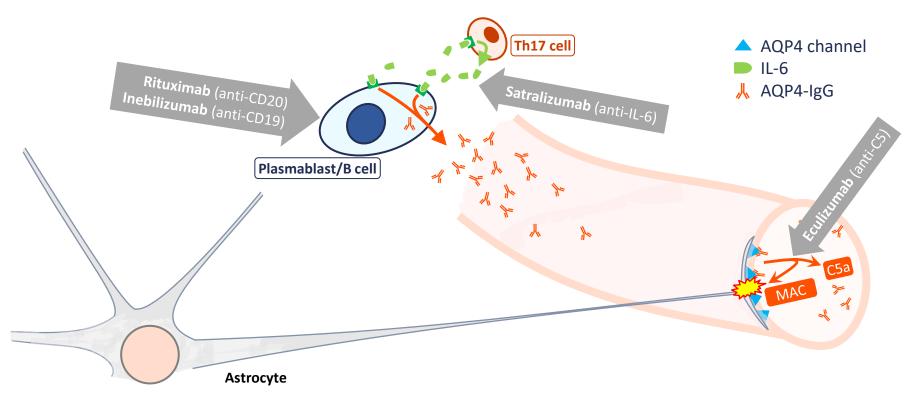
3. Kessler RA, et al. Mult Scler Relat Disord. 2017;17:198–201; 4. Majed M, et al. Neurol Neuroinmunol Neuroinflamm. 2016;3:e231;

5. Jarius S, et al. J Neurol Sci. 2011;306:82-90.

AQP4-IgG, aquaporin 4-immunoglobulin G; MOGAD, myelin oligodendrocyte glycoprotein antibody disease; MRI, magnetic resonance imaging; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder.

Prof. Sean Pittock

Mayo Clinic Rochester, MN, USA


Prof. Dean Wingerchuk

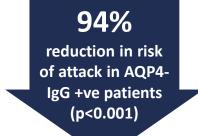
Mayo Clinic Phoenix and Scottsdale AZ, USA

NMOSD, neuromyelitis optica spectrum disorder.

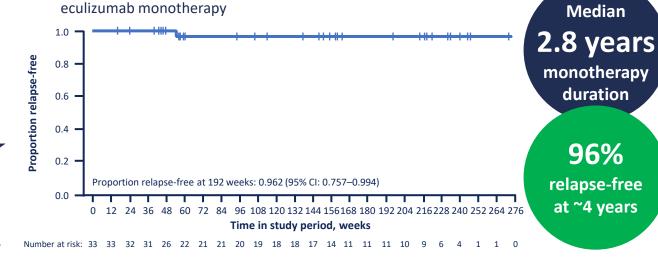
Targets for approved NMOSD immunotherapies^{1–3}

AQP4, aquaporin-4; C5(a), complement protein 5(a); CD19/20, cluster of diffentiation-19/20; IgG, immunoglobulin G; IL-6, interleukin-6; MAC, membrane attack complex; NMOSD, neuromyelitis optica spectrum disorder.

1. Weinshenker BG, et al. Mayo Clin Proc. 2017;92:663–79; 2. Chihara N, et al. touchREVIEWS Neurol. 2021;17:11–5; 3. Pittock SJ, et al. Nat Rev Neurol. 2021;17:759–73.


Eculizumab: PREVENT study (AQP4-IgG +ve NMOSD)

PREVENT primary analysis¹

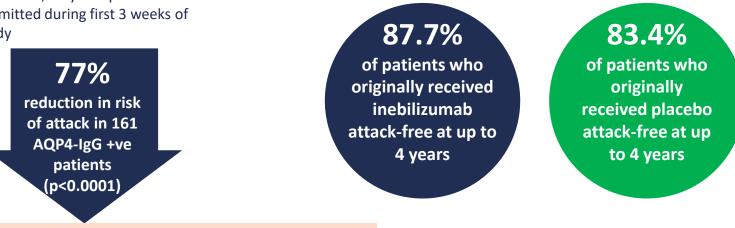

- 96 patients received eculizumab
- 47 patients received placebo
- Concomitant immunotherapy permitted

Open-label extension^{2*}

- Crossover to eculizumab from placebo was permitted
- 33 patients with AQP4-IgG +ve NMOSD received eculizumab monotherapy

• 0/21 relapses at 144 weeks with eculizumab monotherapy vs 7/13 with placebo monotherapy

NCT01892345 (PREVENT); NCT02003144 (open-label extension). * Figure reproduced with permission from Pittock SJ, et al. *Mult Scler J. 2021;doi: 10.1177/13524585211038291.* AQP4-lgG +ve, aquaporin-4-lgG-positive; CI, confidence interval; NMOSD, neuromyelitis optica spectrum disorder. 1. Pittock SJ, et al. *N Engl J Med.* 2019;381:614–25; 2. Pittock SJ, et al. *Mult Scler J. 2021;doi: 10.1177/13524585211038291.*


Inebilizumab: N-MOmentum study

N-MOmentum primary analysis¹

- 174 patients received inebilizumab
- 56 patients received placebo
- Concomitant immunotherapy not permitted; only oral prednisone permitted during first 3 weeks of study

Open-label extension²

- Crossover to open-label phase permitted
- 216 patients entered in total (91% of placebo group and 95% of inebilizumab group)

• Not powered to assess efficacy in AGQ4-IgG -ve patients

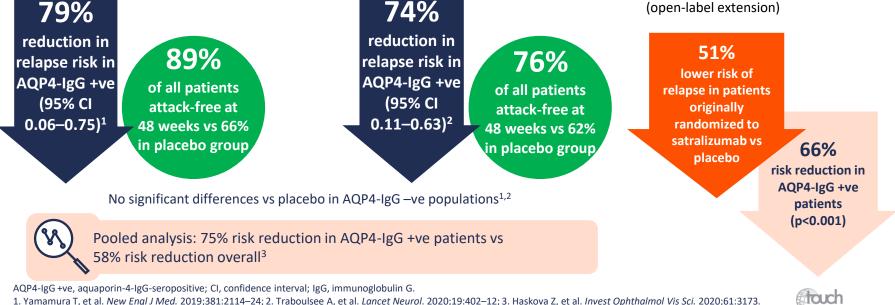
NCT02200770.

AQP4-IgG +ve, aquaporin-4-IgG-seropositive; CI, confidence interval; IgG, immunoglobulin G; NMOSD, neuromyelitis optica spectrum disorder. 1. Cree BAC, et al. *Lancet*. 2019;394:1352–63; 2. Cree BAC, et al. Presented at 2021 American Academy of Neurology Annual Meeting; April 17-22. Abstract P15.076.

Satralizumab: SAkuraSky and SAkuraStar studies

SAkuraSky study¹

- 41 patients received satralizumab
- 42 patients received placebo
- Concomitant immunotherapy permitted


SAkuraStar study²

- 63 patients received satralizumab
- 32 patients received placebo
- Concomitant immunotherapy prohibited

Open-label extension⁴

- 166 patients from both studies
- Median satralizumab exposure was 96.1 weeks (randomized study period) and 131.9 weeks (open-label extension)

NEUROLOGY®

4. Haskova Z, et al. Invest Ophthalmol Vis Sci. 2021;62:3475.

AE profiles with immunotherapies for NMOSD

Eculizumab PREVENT study

Compared with placebo:

- Similar overall AE (92% vs 91%) and SAE (16% vs 15%) rates¹
- More upper RTIs 29% vs 13%¹
- No meningococcal infections¹
- One death from pulmonary empyema in the eculizumab group²
- Long-term monotherapy well tolerated in the OLE²

Inebilizumab N-MOmentum study

Compared with placebo:

- Similar overall AE (72% vs 73%) and SAE (5% vs 9%) rates³
- More arthralgia 10% vs 4%³
- Similar rates of IRR (9% vs 11%) and infection (38% vs 41%)²
- Two deaths during the OLE (disease worsening in the context of pneumonia and an indeterminate brain lesion)²
- Treatment well tolerated over 4 years in the OLE²

Satralizumab

SAkuraSky and SAkuraStar studies

Compared with placebo:

- Similar overall AE (90% vs 95%⁴ and 92% vs 75%⁵) and SAE (17% vs 21%⁴ and 19% vs 16%⁵) rates
- Similar rates of serious infection (5% vs 7%⁴ and 10% vs 9%⁵)
- No anaphylactic reactions or opportunistic infections²
- No new safety signals reported in the OLE⁶

(S)AE, (serious) adverse event; IRR, infusion-related reaction; NMOSD, neuromyelitis optica spectrum disorder; OLE, open-label extension; RTI, respiratory tract infection. 1. Pittock SJ, et al. *N Engl J Med*. 2019;381:614–25; 2. Pittock SJ, et al. *Nat Rev Neurol*. 2021;17:759–73; 3. Cree BAC, et al. *Lancet*. 2019;394:1352–63; 4. Yamamura T, et al. *New Engl J Med*. 2019;381:2114–24; 5. Traboulsee A, et al. *Lancet Neurol*. 2020;19:402–12; 6. Haskova Z, et al. *Invest Ophthalmol Vis Sci*. 2021;62:3475.

Factors influencing immunotherapy choice

Availability^{1*}

- Eculizumab and satralizumab approved in several regions including the USA, Canada, Japan, Australia and some EU countries
- Inebilizumab approved in the USA and Japan

Testing

- Need for sensitive and specific cell-based AQP4-IgG assays¹
- No agent has been approved for AQP4-IgG-negative NMOSD

Patient preference and adherence

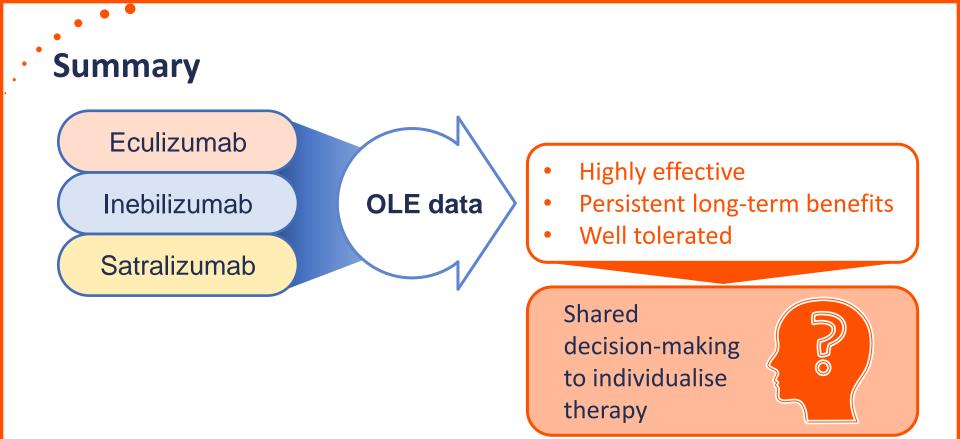
Administration route and frequency

- Eculizumab: i.v. administration weekly for five doses then every 2 weeks²
- Inebilizumab: i.v. administration of two doses, 2 weeks apart, then one dose every 6 months³
- Satralizumab: s.c. injection every
 2 weeks for three doses then every 4 weeks⁴

Willingness to switch if stable

on older therapy¹

Infection risk with lifelong therapy, and with concomitant immunosuppressives **Cost** of lifelong therapy


*As of December 2021. AQP4-IgG, aquaporin-4 immunoglobulin; i.v., intravenous; NMOSD, neuromyelitis optica spectrum disorder; s.c., subcutaneous.

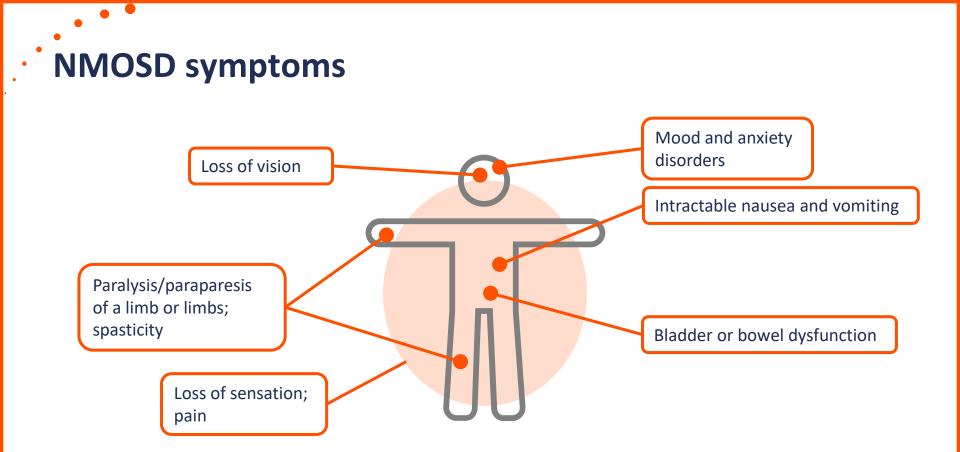
1. Pittock SJ, et al. Nat Rev Neurol. 2021;17:759–73; 2. Eculizumab prescribing information 2019. www.accessdata.fda.gov/drugsatfda_docs/label/2019/125166s431lbl.pdf;

3. Inebilizumab prescribing information 2020. www.accessdata.fda.gov/drugsatfda_docs/label/2020/761142s000lbl.pdf;

Adopting a holistic approach to improve quality of life for patients with NMOSD

Prof. Sean Pittock

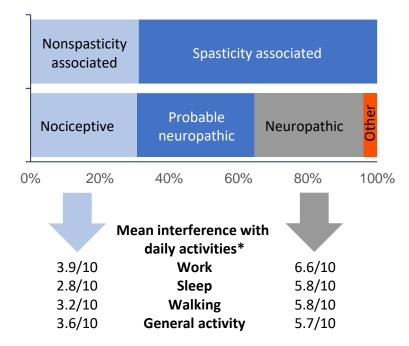
Mayo Clinic Rochester, MN, USA

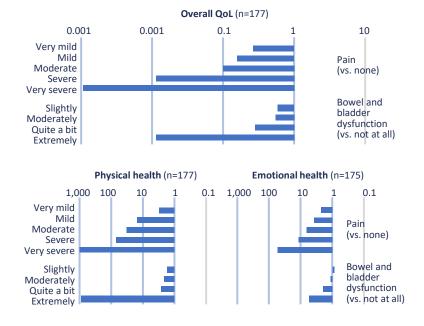


Prof. Dean Wingerchuk

Mayo Clinic Phoenix and Scottsdale, AZ, USA **Dr Amy Kunchok**

Cleveland Clinic Cleveland, OH, USA





Pain, depression and quality of life

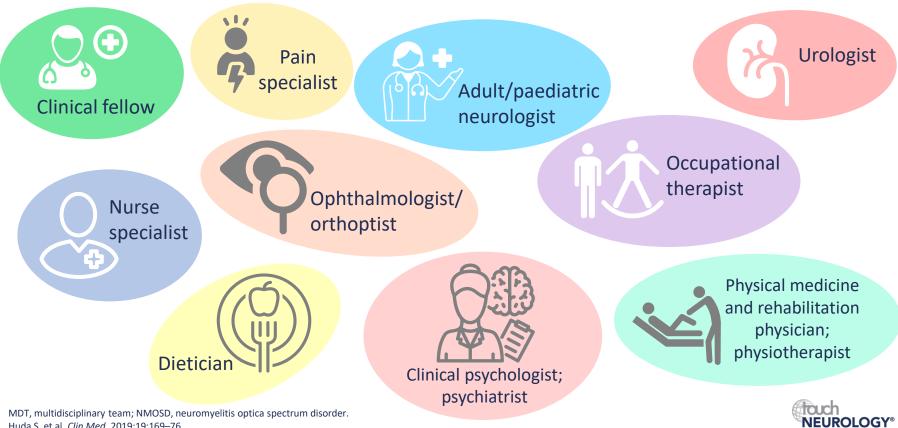
Character of pain in NMOSD and effect on daily living¹

Impact of pain on QoL, physical and emotional health^{2**}

*Measured using the short form of the Brief Pain Inventory questionnaire. **Figure reproduced with permission from Fujihara K, et al. *J Neurol Sci.* 2021;428:117546. NMOSD, neuromyelitis optica spectrum disorder; QoL, quality of life. 1. Avzenberg I, et al. *Neurol Neuroimmunol Neuroinflamm*. 2021;8:e985; 2. Fujihara K, et al. *J Neurol Sci.* 2021;428:117546.

Neurogenic bladder in NMOSD

- Approximately 80% of patients with NMOSD have LUTS¹
 - LUTS are more common and severe in NMOSD than in MS, and may persist after recovery from an attack



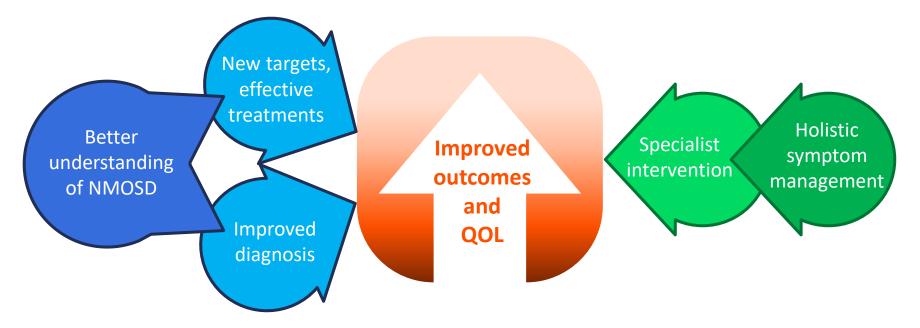
Urinary retention and catheterization Reduction of bladder compliance Febrile urinary tract infections vs MS patients²

- Ongoing management may therefore be required
- Specialist referral should be considered

MDT composition for NMOSD

Huda S, et al. Clin Med. 2019;19:169-76.

Prof. Sean Pittock


Mayo Clinic Rochester, MN, USA

Significant progress in NMOSD research over the last 20 years

