Individualizing long-term treatment and care in active MS: How are therapeutic sequencing options evolving to address unmet needs?

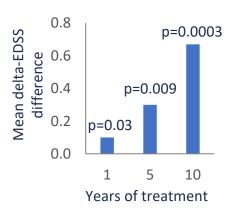
Disclaimer

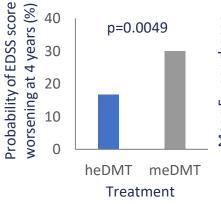
- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by USF Health and touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by USF Health or touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in USF Health or touchIME activities
- USF Health and touchIME accept no responsibility for errors or omissions

. A conversation between:

Dr Ide Smets
Erasmus MC Hospital
MS Center ErasMS
Rotterdam, The Netherlands

Dr Ruth Dobson
Preventive Neurology Unit
Queen Mary University of London
UK




Factors guiding the use of high-efficacy DMTs in the management of active MS



High-efficacy DMTs are most effective in delaying disease progression

- High-efficacy (EIT) vs escalation approach¹
- RRMS (N=2,702)

- High efficacy vs medium efficacy initial DMT*2
- MS (N=388)

- High-efficacy (EIT) vs escalation approach³
- MS (N=592)

- High-efficacy (IND) vs escalation approach^{†4}
- RRMS (N=150)

^{*}Medium-efficacy DMTs were defined as interferon-β, teriflunomide, dimethyl fumarate or glatiramer acetate;

[†]Induction immunosuppression was defined as intravenous immunosuppression (mitoxantrone or cyclophosphamide), followed or not by maintenance treatments.

DMT, disease-modifying therapy; EDSS, Expanded Disability Status Scale; EIT, early intensive treatment; ESC, escalation to higher-efficacy DMT; heDMT, high-efficacy DMT; IND, induction; meDMT, medium-efficacy DMT; MS, multiple sclerosis; RRMS, relapsing—remitting MS.

^{1.} laffaldano P, et al. Ther Adv Neurol Disord. 2021;14:17562864211019574; 2. Buron MD, et al. Neurology. 2020;95:e1041–51;

^{3.} Harding K, et al. JAMA Neurol. 2019;76:536-41; 4. Prosperini L, et al. Neurotherapeutics. 2020;17:994-1004.

Factors for initiating high-efficacy DMTs¹⁻⁶

Patient characteristics

- Age
- Sex
- Family planning
- Expected adherence
- Personal preference

Side effects

 Considerations should be given to monitoring measures

Existing comorbidities

 Comorbidity decreases the likelihood of initiating DMT

Accessibility

 Cost of the therapy and the possibility of reimbursement

^{1.} Wiendl H, et al.. Ther Adv Neurol Disord. 2021;14:17562864211039648; 2. Montalban X, et al. Mult Scler. 2018;24:96—120; 3. Rae-Grant A, et al. Neurology. 2018;90:777—88;

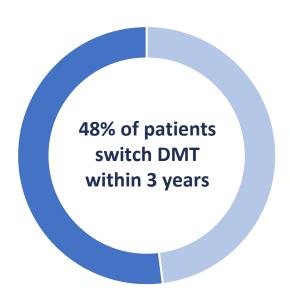
Current approaches and safety considerations relating to DMT switching and sequencing in MS

Guidelines in the event of breakthrough disease activity or inadequate response to current DMT

MSTCG¹

ΔN^2

- Determinants of treatment failure:
 - ≥3 new T2 lesions and 1 relapse
 OR
 - ≥2 relapses in last 6–12 months*
- After initiating high-efficacy DMTs:
 - A cerebral MRI scan should be performed yearly


- Determinants of treatment failure (in last 12 months):
 - o ≥1 relapse
 - o ≥2 new MRI-detected lesions
 - Increased disability
- Before natalizumab discontinuation:
 - Patients should know the risks (e.g. increased risk of relapse within 6 months)

Making an informed decision regarding switching DMTs is complex – physician judgement and patient preferences are critical^{1,2}

^{*}Independent of MRI activity.

Real-world data: Switching DMT in the event of poor tolerability or inadequate response

- Observational study of patients with RRMS (N=2,954)
- Switch risk for lack of efficacy of other DMTs vs interferons
 - Fingolimod (HR=0.50; p=0.009)
 - Natalizumab (HR=0.13; p<0.001)
 - Dimethyl fumarate (HR=0.60; p=0.037)
 - Teriflunomide (HR=0.21; p=0.031)

Approaches needed to support women of child-bearing age living with MS through family planning and beyond

Guidelines for the use of DMTs in pregnancy

MSTCG¹

ate

$\Delta A N^2$

- Only interferons and glatiramer acetate are approved
- For highly active disease, control of disease activity should be a priority and postponement of a planned conception is advised
- For pregnancies in patients with highly active disease, natalizumab may be given up to week 32
- Use of DMTs can be resumed after delivery, taking into account requirements and restrictions during breastfeeding

- Stop use of DMT before conception for planned pregnancies unless the risk of disease activity during pregnancy outweighs the risk associated with the specific DMT during pregnancy
- DMTs should not be initiated during pregnancy unless the risk of disease activity during pregnancy outweighs the risk associated with the specific DMT during pregnancy

Real-world data: Pregnancy DMT exposure

DMT	First trimester exposure	Pregnancy exposure	Rebound risk
Ofatumumab	Limited data (n=30) with no congenital anomalies reported in 17 livebirths	No data	None
Natalizumab	Probably no increased risk of spontaneous abortion or congenital abnormality (n>500)	Haematological abnormalities in <60 neonates	Yes
Glatiramer acetate	No association with negative pregnancy outcomes (n>2,500)	No association with negative pregnancy outcomes (n>100)	None
Interferon betas	No association with negative pregnancy outcomes (n>2,500)	No association with negative pregnancy outcomes (n<100)	None

Real-world data: Pregnancy DMT exposure

DMT	First trimester exposure	Pregnancy exposure	Rebound risk
Immune modulators*	Potential increase in spontaneous abortion with teriflunomide and cladribine	Limited data	 Limited data Case reports outside of pregnancy with teriflunomide
S1P receptor modulators	Suspected increased risk of congenital abnormalities (limited data)	Limited data	Fingolimod: YesNo data for other agents
Anti-CD20 antibodies	Increased risk of spontaneous abortion or congenital abnormality unlikely	Probable risk for reduced B-cell count in neonates	None

These agents are not recommended during pregnancy by the EMA and FDA

^{*}Teriflunomide, cladribine, and dimethyl fumarate and diroximel fumarate.

DMT, disease-modifying therapy; EMA, European Medicines Agency; FDA, Food and Drug Administration; S1P, sphingosine-1-phosphate.

Krysko KM, et al. *Lancet Neurol*. 2023;22:350–66.