Intracranial haemorrhage related to direct oral anticoagulant medications: Latest evidence for reversal strategies

> Data updates April 2025

Date of preparation: 22 April 2025

Additional data on the risk of ICH with anticoagulant use (1/2)

	MORTALITY OF ICH DURING ORAL FXal TREATMENT ¹	REAL-WORLD EFFECTIVENESS AND SAFETY OF DOACS AND WARFARIN IN PATIENTS WITH CVT ²
Aims	To assess the frequency of ICH during oral FXal treatment, and the associated burden, using German claims data	To provide real-world insights into DOAC efficacy and safety for CVT
Methods and outcomes	 A retrospective, observational study of claims data (2016 to 2021) for patients initiating Fxal treatment who experienced ICH during a 3-year treatment period Outcome: Incidence of ICH and associated burden 	 A retrospective cohort study based on propensity score matched data from TriNetX (n=551) Primary outcome: recurrent CVT Secondary outcomes included ICH and all-cause mortality
Results	 78,086 patients initiated oral FXal therapy; 530 experienced ICH Cumulative incidence of ICH First 3 months: 0.64 events/100 PY (95% CI, 0.52-0.77) Over 3 years: 0.50 events/100 PY (95% CI, 0.45-0.54) 3-month mortality ICH event: 39.4% (95% CI, 35.4-43.8%) No ICH event: 5.9% (95% CI, 4.2-8.3%) 	 DOACs vs warfarin Risk of ICH: HR, 0.62 (95% CI, 0.43–0.91) All-cause mortality: HR, 1.03 (95% CI, 0.67–1.59)
Conclusions	Incidence rates of ICH during oral FXal therapy were within the range of other published real-world data; mortality was high and significantly higher for patients with ICH vs comparable patients without ICH	DOACs had a lower risk of ICH and comparable all-cause mortality vs warfarin

Additional data on the risk of ICH with anticoagulant use (2/2)

	PATIENTS WITH AF RECEIVING EDOXABAN: 2-YEAR FOLLOW-UP OF THE GLOBAL ETNA-AF PROGRAMME ¹	DOACs vs NO ANTICOAGULATION IN PREVENTING STROKE IN SURVIVORS OF ICH WITH AF ²
Aims	To assess the long-term safety and efficacy of DOACs vs warfarin in patients with AF	To determine whether DOACs reduce the risk of ischaemic stroke without increasing the risk of recurrent ICH
Methods and outcomes	 A prospective, observational non-interventional study of patients with AF being treated with edoxaban (N=26,805)* Efficacy included all-cause mortality, MI and any stroke Safety included major bleeding, ICH and GI bleeding 	 A multicentre, open-label, phase III trial of patients with ICH, AF and an indication for anticoagulation (N=319) Co-primary endpoints: first ischaemic stroke; first recurrent ICH
Results	 Annualized event rate of 0.27%/year for ICH (95% CI 0.23-0.32%/year) ICH CIF curves showed: Accrual rates slowed between 0 and 24 months At 24 months, the CIF was highest in Japan and in non-Japanese Asian areas, and lowest in Europe 	Event rate for first recurrent ICH: • DOAC: 5.00 (95% CI, 2.68–8.39)/100 PY • No anticoagulant: 0.82 (95% CI ,0.14–2.53)/100 PY • HR: 10.89 (90% CI, 1.95–60.72), p=0.96) The DOAC group failed to meet the prespecified HR non-inferiority margin of <1.735
Conclusions	Annualized event rates were low; regional differences in efficacy and safety at 2 years may reflect variations in baseline characteristics	DOACs prevent ischaemic strokes in survivors of ICH with AF, but there is an increased risk of recurrent ICH

*Europe n=13,164; Japan n=10,342; non-Japanese Asian regions n=3,299.1

AF, atrial fibrillation; CI, confidence interval; CIF, cumulative incidence function; DOAC, direct oral anticoagulant; GI, gastrointestinal; HR, hazard ratio; ICH, intracranial haemorrhage; MI, myocardial infarction; PY, patient year.

Latest data on the efficacy and safety of AA vs PCC in ICH

	EFFICACY AND SAFETY OF AA vs 4F-PCC TO REVERSE FXal-ASSOCIATED ICH ¹	EFFICACY AND SAFETY OF AA FOR FXal -ASSOCIATED ICH ²	EFFICACY AND SAFETY OF AA AND PCC IN REVERSING FXal-RELATED ICH ³
Aims	To provide insight into the comparative efficacy and safety of AA and 4F-PCC in the emergent reversal of FXaI-associated ICH	To assess the efficacy and safety of AA vs usual care* for the treatment of FXal-associated ICH	To assess the effectiveness and safety of AA and PCC following ICH-associated with DOACs
Methods and outcomes	 A systematic review/meta-analysis of 16 studies including patients treated with AA or 4F-PCC to reverse FXal-associated ICH (N=2,977) Primary outcomes: anticoagulation reversal, overall mortality and TEs 	 A systematic review/meta-analysis of RCTs and observational studies of AA (n=1,567) vs usual care (n=1,969) Primary outcome: haemostatic efficacy (haematoma expansion of ≤35% or ≤6 mL) 	 A multicentre, retrospective, observational study of patients with apixaban or rivaroxaban-related ICH (N=1,096) Primary efficacy outcome: patients (%) with excellent or good haemostasis Primary safety outcome: occurrence of a TE in hospital
Results	 Haemostatic efficacy favoured AA: RR=1.10 (95% CI, 1.01–1.20), p=0.02 Overall mortality is lower for AA: RR=0.67 (95% CI, 0.51–0.88), p=0.004 TEs are higher for AA: RR=1.47 (95% CI, 1.01–2.15), p=0.046 	 Likelihood of haemostatic efficacy favoured AA: RR=1.16 (95% CI, 1.06–1.26) Haemostatic efficacy and functional outcome for AA vs usual care were similar Rates of mortality and TEs were similar for AA vs usual care 	Efficacy: OR of achieving excellent/good haemostasis • AA (88%) vs PCC (82%) OR=1.60 (95% CI, 1.00-2.56), p=0.048 Safety: OR for a TE • AA (7.9%) vs PCC (4.2%) OR=1.91 (95% CI, 1.13-3.20), p=0.014
Conclusions	AA is superior to 4F-PCC in enhancing the haemostatic efficacy and reducing overall and in-hospital mortality rates, but is associated with a higher risk of TEs	AA is associated with improved haemostatic efficacy vs usual care, with no significant differences observed in functional and safety outcomes	AA was associated with statistically higher odds of achieving haemostatic efficacy vs PCC, but also with higher odds of a TE

*Including, but not limited to, 4F-PCC, other PCC products, fresh frozen plasma and tranexamic acid.²

4F, four factor; AA, andexanet alfa; CI, confidence interval; DOAC, direct oral anticoagulant; FXaI, Factor Xa inhibitor; ICH, intracranial haemorrhage; OR, odds ratio; PCC, prothrombin complex concentrate; RR, risk ratio; TE, thromboembolic event.

1. Sarhan K, et al. *Neurocrit Care*. 2025;42:701–14; 2. Tsivgoulis G, et al. *J Neurol Neurosurg Psychiatry*. 2025. doi: 10.1136/jnnp-2024-335558 (Epub ahead of print); 3. Panos NG, et al. *Crit Care Med*. 2025. doi: 10.1097/CCM.0000000006656 (Epub ahead of print).

Safety of idarucizumab and AA in older patients

	SAFETY OF DOAC REVERSAL AGENTS IN OLDER PATIENTS
Aims	To assess the frequency, characteristics, and clinical and demographic factors of ADRs associated with the use of idarucizumab and AA
Methods and outcomes	 A retrospective observational analysis of suspected ADRs in VigiBase® for idarucizumab or AA up to 31 May 2023 (N=1,095; 72% idarucizumab; 28% AA) Key outcomes: probability of serious ADR, death and TEs
Results	 ADRs were serious in 88.6% of cases, with a total of 56.1% fatal cases Compared with patients not receiving concomitant medications: There was a higher probability of serious ADRs and death for patients treated with idarucizumab + ≥5 concomitant medications (ROR: 4.04 and 1.66, respectively) and in those receiving AA + 1-4 concomitant medications (ROR: 5.66 and 4.80, respectively) The probability of TEs was significantly lower in patients aged 75-84 years (ROR: 0.55) and ≥85 years (ROR: 0.50)
Conclusions	Clinicians should pay particular attention when managing individuals needing these DOAC reversal agents, especially if vulnerable and requiring polytherapy

Latest data on the efficacy and safety of PCC

	PCC FOR REVERSAL OF OACS IN PATIENTS WITH OAC-RELATED CRITICAL BLEEDING ¹	3F- vs 4F-PCC FOR THE REVERSAL OF ORAL FXal ²
Aims	To evaluate the benefits and harms of PCC in patients with OAC-related critical bleeding (internal or external haemorrhage)	To compare the haemostatic effectiveness and safety of 3F- vs 4F-PCC for oral FXal-associated bleeding
Methods and outcomes	 Systematic review of 3 RCTs (N=291) comparing PCC vs two active comparators in patients with VKA-related critical bleeding, and 2 RCTs (N=534) evaluating PCC vs two active comparators in patients with FXaI-critical bleeding Primary outcomes: All-cause mortality, HRQoL and SAEs 	 A retrospective, observational, multicentre study (N=125) Primary outcome: haemostatic effectiveness Secondary outcomes: TEs, in-hospital mortality, and length of hospital/ICU stay
Results	 VKA-related critical bleeding: No difference between PCC vs FFP for all-cause mortality, HRQoL or SAEs FXal-related critical bleeding: PCC was neither superior nor inferior to other reversal strategies (FFP or AA) on any outcome Available data are sparse 	 Haemostatic effectiveness: 84% of all patients; no differences between the groups (p=0.81) Secondary outcomes: no difference between the groups in length of hospital/ICU stays, in-hospital mortality or incidence of TEs
Conclusions	Evidence from RCTs is insufficient to establish if PCC is superior or inferior vs other interventions in decreasing adverse outcomes or improving HRQoL	No significant differences were found in the effectiveness or safety of 4F-PCC and 3F-PCC in the management of oral FXaI-associated bleeding

NEUROLOGY

3F, three factor; 4F, four factor; AA, andexanet alfa; DOAC, direct oral anticoagulant; FFP, fresh frozen plasma; FXal, Factor Xa inhibitor; HRQoL, health-related quality of life; ICU, intensive care unit; OAC, oral anticoagulant; PBO, placebo; PCC, prothrombin complex concentrate; RCT, randomized control trial; SAE, serious adverse event; TE, thromboembolic events; VKA, vitamin K antagonist.

Intracranial haemorrhage related to direct oral anticoagulant medications: Latest evidence for reversal strategies

> Data updates January 2025

Date of preparation: 28 January 2025

Additional data on the risk of ICH with anticoagulant use (1/2)

	SAFETY AND EFFECTIVENESS OF DOACS VS WARFARIN FOR VTE ¹	RISK OF ICH WITH DOAC VS ANTIPLATELET THERAPY ²
Aims	To assess the effectiveness and safety of DOACs compared with warfarin using data from real-world practice settings	To determine whether DOAC therapy, vs single-agent antiplatelet therapy, was associated with an increased risk of ICH and major haemorrhage
Methods and outcomes	 A systematic review and meta-analysis of observational studies of DOACs vs warfarin in patients with acute VTE (680,695 patients) Effectiveness: risk of VTE recurrence Safety outcomes: major bleeding, clinically relevant non-major bleeding, intracranial haemorrhage, gastrointestinal bleeding and all-cause mortality 	 A systemic review and meta-analysis of randomized controlled trials (45,494 patients) Primary outcome: ICH Secondary outcomes: major haemorrhage, fatal haemorrhage, GI haemorrhage, ischaemic stroke and cardiovascular mortality
Results	 Risk of VTE recurrence (DOACs vs warfarin): 24% reduction Safety: ICH risk (DOAC vs warfarin): 31% reduction ; however, no significant difference in incidence of ICH in studies reporting number of events/arm 	 DOAC therapy not associated with significantly higher odds of ICH vs antiplatelet therapy: 0.55% vs 0.48%, OR 1.15 DOAC therapy was associated with significantly higher odds of major haemorrhage vs antiplatelet therapy: 2.41% vs 1.76%, OR 1.39
Conclusions	DOACs demonstrate favourable effectiveness and safety vs warfarin but clinicians should evaluate pts for bleeding risk factors before initiating DOAC therapy	DOAC therapy was not associated with a significantly higher risk of ICH vs antiplatelet therapy, but was associated with a higher risk of major haemorrhage

Additional data on the risk of ICH with anticoagulant use (2/2)

	ICH IN PATIENTS TAKING DIFFERENT TYPES OF OAC ¹	CDM FOR RISK FOR ANTICOAGULANT-INDUCED ICH ²	REAL-WORLD PHARMACOVIGILANCE STUDY OF OAC-INDUCED ICH ³
Aims	To assess outcomes in patients with ICH according to prior OAC or no anticoagulation	To investigate incidence and risk factors for OAC-induced sICH in a real-world setting	To describe the national post-market cases of OAC-induced ICH
Methods and outcomes	 Observational study using two prospective national stroke registries (11,349 patients) Main outcomes: favourable functional outcome (modified Rankin scale 0-2) and mortality at 3 months 	 A retrospective study of the clinical data warehouse from the SNUH (12,821 patients) Used a CDM to analyse incidence and risk factor of sICH 	• Analysis of the FAERS-reported cases of OAC-related ICH (11,201 cases)
Results	 Favourable outcome (DOAC vs no anticoagulation): adjusted OR 0.64 3-month mortality (DOAC vs no anticoagulation): adjusted OR 1.28 	 Incidence of sICH: warfarin 0.5% and NOAC 0.2% Risk factors: warfarin over NOAC, hypertension, diabetes, brain tumours, decreased duration of OAC 	 Median time to onset: 181 days Median age at onset of ICH: 75 years After adjusting for confounding factors, lower ICH risks observed with DOACs vs VKAs
Conclusions	Prior DOAC is independently associated with lower odds of a favourable outcome and higher odds of 3-month mortality	NOACs demonstrated a lower risk of sICH vs warafarin in a real-world setting; use of a CDM may be beneficial in clinical studies	DOACs demonstrated a robust lower risk of ICH vs VKAs. The majority of OAC-induced ICH occurred within 5 months and in elderly patients

CDM, common data model; CI, confidence interval; DOAC, direct oral anticoagulant; FAERS, US Food and Drug Administration Adverse Event Reporting System; ICH, intracranial haemorrhage; NOAC, novel oral anticoagulant; OAC oral anticoagulant; OR, odds ratio; pts, patients; s, spontaneous; SNUH, Seoul National University Hospital; VKA, vitamin K antagonist. 1. Siepen BM, et al. Stroke Vas Neurol. 2024;9:e002813; 2. Hong, N et al. J Clin Neurosci. 2025;8:133:111039; 3. Chen J, et al. Expert Opin Drug Saf. 2024 Dec 11:1-10. doi: 0.1080/14740338.2024.2430320 (Online ahead of print).

NEUROLOGY

Real-world evidence for the effectiveness and safety of andexanet alfa

	EFFECTIVENESS OF ANDEXANET ALFA (ASTRO-DE STUDY) ¹	EFFECTIVENESS OF ANDEXANET ALFA IN AN ITALIAN POPULATION ²
Aims	To assess the real-world evidence for AA in mitigating haematoma expansion and altering the prognosis rivaroxaban- or apixaban-treated patients with ICH	To review outcomes for Italian patients treated with AA as a reversal agent for FXal-related major bleedings
Methods and outcomes	 Prospective, non-interventional cohort study (137 patients) Primary outcomes: HVC; proportion of patients with haematoma growth ≤33% within 12-72h or until first control imaging Secondary outcomes include in-hospital TE; mortality up to 90 days 	 Retrospective collection of real-world data of FXal-related haemorrhage (51 patients) Predominant bleeding type: ICH, particularly intracerebral: 68.6%
Results	 At first control imaging: mean HVC 2.3 mL and haematoma growth ≤33% 90.3% of patients Within 12-72h: mean HCV 1.8 mL and haematoma growth ≤33% 90.5% of patients TEs: 8.0% (n=11/137) and 90-day mortality: 36.7% (n=47/128) 	 In patients with ICH, median haematoma volume expansion was 12.34% Successful haemostasis rate: 77% of patients (53.7% with intracerebral haemorrhage) OR for 30-day mortality in patients with ICH: 1.87 TEs: 9.8%
Conclusions	Treatment with AA showed favourable haemostasis and minimal mean haematoma volume growth in patients with ICH and DOAC treatment	This analysis provide a comprehensive overview of FXal-related bleeding events in Italy managed with AA and contribute to the existing evidence

AA, andexanet alfa; DOAC, direct oral anticoagulant; FXal, Factor Xa inhibitor; h, hours; HVC, haematoma volume change; ICH, intracranial haemorrhage; OR, odds ratio; TE, thromboembolic events. 1. Diener H-C, et al. *Int J Stroke*. 2025 Jan 20: doi: 10.1177/17474930251317385 (Online ahead of print); 2. Simioni P, et al. *Thrombosis Res*. 2025: 245:109241.

Additional data for the efficacy and safety of andexanet alfa and other DOAC reversal agents

	EFFICACY AND SAFETY ANDEXANET ALFA VS SOC*1	A UK-BASED AUDIT OF THE USE OF DOAC-REVERSAL AGENTS (ANDEXANET ALFA, PCC OR IDARUCIZUMAB) ²
Aims	To evaluate the efficacy and safety of AA vs SOC* for the reversal of DOAC-induced ICH	To assess the use of DOAC-reversal agents, as well as associated mortality and thrombosis rates
Methods and outcomes	 A systematic review and meta-analysis using prospective or retrospective cohort studies or RCTs (4,330 patients) Primary efficacy outcome: haemostatic efficacy Primary safety outcomes: rates of thrombotic complications; mortality 	 A retrospective, observational audit of patients who received AA, PCC or idarucizumab for DOAC reversal (2,477 patients) Primary outcome: patients receiving a reversal agent who had major bleeding defined by ISTH criteria Secondary outcomes: 90-day mortality; 30-day TE rate
Results	 Haemostatic efficacy, pooled RR: 1.1 favouring AA TE, pooled RR: 1.22 Mortality, pooled RR: 0.81 Subgroup analysis of AA vs 4F-PCC: similar results for haemostatic efficacy and thrombotic complications, but significant mortality risk reduction favouring AA 	 40.8% of patients had an ICH 91.1% of treated patients fulfilled ISTH criteria 13.0% received AA,[†] 82.3% PCC and 4.7% idarucizumab 90-day mortality rate: 45.8% in patients with ICH 30-day TE rate: 3.0%
Conclusions	Treatment with AA offers improved haemostatic efficacy vs SoC, with no effect on thrombotic complications and mortality rates	Most patients fulfilled the ISTH definition of major bleeding; high mortality rates confirm the cohort is enriched for severe presentations of bleeding

*Standard of care in included trials was 4- or 3-factor PCC, activated PCC or tranexamic acid. [†]AA use restricted to gastrointestinal haemorrhage in most of the UK. AA, andexanet alfa; DOAC, direct oral anticoagulant; ICH, intracranial haemorrhage; ISTH, International Society of Thrombosis and Haemostasis; PCC, prothrombin complex concentrate; RCT, randomized control trial; RR, risk ratio; SOC, standard of care; TE, thromboembolism. 1. Xiang AJ, et al. *Blood*. 2024;144 (Suppl. 1):5089–90; 2. Buka, RJ, et al. *Blood*. 2024;144 (Suppl. 1):2637–8.

Intracranial haemorrhage related to direct oral anticoagulant medications: Latest evidence for reversal strategies

> Data updates October 2024

Date of preparation: 30 October 2024

There is new evidence for the efficacy and safety of DOAC reversal agents and for monitoring their efficiency

	EFFICACY AND SAFETY	EFFICACY AND SAFETY	MONITORING THE EFFICIENCY OF
	OF 4F-PCC ¹	OF ANDEXANET ALFA VS 4F-PCC ²	REVERSAL ON ANTI-FXa DOACs ³
Aims	To evaluate outcomes in patients	To assess the comparative efficacy	To assess point-of-care viscoelastic
	treated with PCC for FXal-associated	and safety of AA and 4F-PCC in the	testing as a method of detecting DOAC
	bleeding or urgent surgery	reversal of FXal-associated ICH	concentrations before/after reversal
Methods	 Single-centre retrospective study Patients receiving 4F-PCC* for FXal- associated major bleeding or surgery Primary outcome: haemostatic efficacy Safety outcome: 30-day risk of TE 	 Systematic review and meta-analysis of studies until 16 May 2024 (N=2,977) Primary outcomes: Haemostatic efficacy; overall mortality; TE events REM used to pool data 	 Case series of three patients requiring DOAC reversal for bleeding POC VET lab assays (RVV clotting time test) used to measure DOAC effects after reversal with AA
Results	 FXal-associated bleeding, n=83[†] 32 (39%) had ICH Effective haemostasis in 67% of patients with bleeding 30-day risk of TE was 8% overall 	 Haemostatic efficacy in favour of AA: RR 1.10, 95% CI 1.01–1.20 (p=0.02) Lower overall mortality with AA: RR 0.67, 95% CI 0.51–0.88 (p=0.004) More TE events with AA: RR 1.47, 95% CI 1.01–2.15 (p=0.046) 	 RVV clotting time assays were able to: Detect and quantify DOACs Confirm haemostatic effect of reversal agents (<i>clotting time after AA infusion</i>: 90–91s[‡]) Identify late DOAC rebound
Conclusions	PCC for FXal-associated bleeding was	AA is superior to 4F-PCC in terms of	If confirmed in large validation
	associated with haemostatic efficacy	haemostatic efficacy and reducing	studies, utilization of RVV-CT in
	in two-thirds of patients;	overall mortality. More TE events are	routine emergency care will
	30-day TE event rate was <10%	associated with use of AA vs 4F-PCC	streamline the care of DOAC patients

*25-50 IU/kg; †Urgent surgery, n=22; ‡Results for patients 1 and 3; patient 2 received low-dose AA as rescue therapy.
4F-PCC, four-factor of prothrombin complex concentrate; AA, andexanet alfa; DOAC, direct oral anticoagulant; FXal, Factor Xa inhibitor; GI, gastrointestinal; ICH, intracranial haemorrhage; POC, point-of-care; REM, random effects model; RR, risk ratio; RVV, Russell viper venom; TE, thromboembolism; VET, viscoelastic testing.
1. Shaw JR, et al. *Thromb Res.* 2024;243: 109172; 2. Sarhan K, et al. *Neurocrit Care.* 2024. DOI: https://doi.org/10.1007/s12028-024-02130-y. Online ahead of print; 3. Heubner L, et al. *Thromb J.* 2024;22:89.

INTERACT trial updates demonstrate the importance of blood pressure and blood sugar control in ICH

	POOLED ANALYSIS OF ALL FOUR INTERACT TRIALS ¹ Impact of timing of blood pressure lowering	INTERACT3 TRIAL SUBANALYSIS ² Impact of blood glucose levels
Aims	To assess the heterogeneity in the treatment effect of BP lowering, based on treatment time in ICH	To determine associations of BG and unfavourable functional outcome in patients with ICH without diabetes
Methods	 Individual patient data pooled analysis of INTERACTI, 2, 3 and 4 trials N=2,921 patients with ICH Ordinal logistic regression model used to define heterogeneity in treatment effect on 90-d efficacy (mRS) 	 Post hoc analysis of INTERACT3, an RCT where BL characteristics were collected at ICH hospital admission Logistic regression models used to determine associations of BG as continuous and categorical exposures and 6-month functional outcome (mRS)*
Results	 Treatment, n=1,467; control, n=1,454 Significant heterogeneity in treatment effect by treatment time (p for interaction, 0.005) More benefit if BP-lowering therapy given within 3 hours of onset 	 n=6,306; median BG 7.1 mmol/L No association between BG and functional outcome: aOR 1.01, 95% CI 0.98-1.04 (p=0.64) Higher BG increased the risk of death: aOR 1.08, 95% CI 1.04-1.12 (p<0.0001) BG >10mmol/L group: aOR 1.50, 95% CI 1.15-1.96 vs the <7.8 mmol/L group (p=0.0019)
Conclusions	Individual patient data pooling aims to provide robust evidence for informing clinical guidelines regarding early BP lowering	In patients with ICH without diabetes, very high BG (>10.0 mmol/L) is associated with death over 6 months. Glycaemic control should be applied in such patients

*Adjusted for study-design, patient and management variables. aOR, adjusted odds ratio; BG, blood glucose; BL, baseline; BP, blood pressure; CI, confidence internal; d, day; ICH, intracranial haemorrhage; INTERACT, Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trials; mRS, modified Rankin Scale; RCT, randomized controlled trial. I. Ren X. Presented at the 16th World Stroke Congress, 23–26 October 2024, Abu Dhabi, UAE. Available at: <u>https://cslide.ctimeetingtech.com/wsc24/attendee/confcal/session/list</u> (accessed 24 October 2024); 2. Ouyang M. Presented at the 16th World Stroke Congress, 23–26 October 2024, Abu Dhabi, UAE. Available at: https://cslide.ctimeetingtech.com/wsc24/attendee/confcal/session/list (accessed 24 October 2024).

The Scientific and Standardization Committee of the ISTH has updated its guidance on reversal of DOACs

2024 update to the prior 2016 guidance includes:

Joac reversal agents

Image: Doac reversal agent

DOAC, direct oral anticoagulant; ISTH, International Society on Thrombosis and Haemostasis. Levy JH, et al. J Thromb Haemost. 2024;22:2889–99.

