{"id":74562,"date":"2024-01-29T14:01:13","date_gmt":"2024-01-29T14:01:13","guid":{"rendered":"https:\/\/touchneurology.com\/?p=74562"},"modified":"2024-11-29T13:20:21","modified_gmt":"2024-11-29T13:20:21","slug":"recent-advances-on-the-diagnosis-and-management-of-seronegative-neuromyelitis-optica-spectrum-disorder","status":"publish","type":"post","link":"https:\/\/touchneurology.com\/neuroimmunology\/journal-articles\/recent-advances-on-the-diagnosis-and-management-of-seronegative-neuromyelitis-optica-spectrum-disorder\/","title":{"rendered":"Recent Advances on the Diagnosis and Management of Seronegative Neuromyelitis Optica Spectrum Disorder"},"content":{"rendered":"

Neuromyelitis optica spectrum disorder (NMOSD) is a rare inflammatory autoimmune disease of the central nervous system (CNS) with a worldwide distribution.1<\/sup><\/span>\u00a0The first clinical description of NMOSD was made a century ago by Devic and Gault, who documented patients with monophasic and bilateral optic neuritis (ON) and myelitis.2<\/sup><\/span>\u00a0A few decades ago, NMOSD was considered a variant of multiple sclerosis (MS). However, after the discovery of antibodies against\u00a0aquaporin-4<\/span>–<\/span>immunoglobulin G<\/span>\u00a0(<\/span>AQP4<\/span>–<\/span>IgG<\/span>)<\/span>\u00a0in the serum of patients with NMOSD, this disease has been considered a distinct condition from MS.3\u20135<\/sup><\/span><\/p>\n

The diagnostic criteria for NMOSD have evolved over the last decades. In 2015, the International Panel for NMO Diagnosis published the current diagnostic criteria, which defined the disease groups based on the positivity for AQP4-IgG.6<\/sup><\/span>\u00a0However, even with the use of the best cell-based assays (CBAs) for AQP4-IgG, some patients with clinical symptoms compatible with NMOSD are still seronegative. In addition, some of these patients who were AQP4-IgG seronegative were positive for another antibody (around 20%), targeting the myelin oligodendrocyte glycoprotein (MOG-IgG), which defines the condition as MOG-IgG-associated disease (MOGAD).7\u201311<\/sup><\/span>\u00a0In the absence of AQP4-IgG and MOG-IgG, patients are commonly defined as double-seronegative NMOSD.7,9,12\u201315<\/sup><\/span><\/p>\n

The prevalence of NMOSD varies from 0.5 to 4 per 100,000 people, and it might be as high as 10 per 100,000 people in Black populations.16,17<\/sup><\/span>\u00a0Epidemiological studies showed that NMOSD seropositive for AQP4-IgG is more prevalent in females (9 females to 1 male), and the mean age of onset is 40 years.9,12,18<\/sup><\/span>\u00a0In MOGAD, the disease usually occurs in a proportion of 1 female to 1 male and is more frequently detected in children than in adults.19,20<\/sup><\/span>\u00a0However, there are few epidemiological data about double-seronegative NMOSD. Previous studies reported that there are no gender differences in this condition, and that Caucasian populations are more affected.21\u201326<\/sup><\/span><\/p>\n

Due to the lack of information about double-seronegative NMOSD, this article aims to review the data about this condition, including clinical presentation, diagnosis, pathogenesis and current and future treatment options, in an attempt to improve the medical care and management of patients with double-seronegative NMOSD.<\/p>\n

Clinical presentation and diagnosis of seronegative<\/span>\u00a0neuromyelitis optica spectrum disorder<\/h1>\n

Clinical presentations of NMOSD can vary from symptoms involving posterior and bilateral ON, longitudinally extensive transverse myelitis (LETM), area postrema lesions and hypothalamic lesions. Patients can present symptoms such as bilateral and usually severe reduced visual acuity, paraparesis or quadriparesis, urinary dysfunction, sensory loss or reduction, nausea, vomiting, prolonged and refractory hiccups, excessive daytime sleepiness and narcolepsy. These symptoms appear as rapidly progressive attacks, may last days and have varying degrees of recovery, over weeks or months.1,27,28<\/sup><\/span><\/p>\n

Some clinical differences can be noticed when comparing patients with AQP4-seropositive and double-seronegative NMOSD. Some previous studies showed that patients with seronegative NMOSD present with a multifocal clinical presentation (ON and myelitis), a lower association with other autoimmune disorders, symptoms of shorter duration and a monophasic course when compared with patients with AQP4-IgG-positive NMOSD. Furthermore, there are few studies indicating that myelitis and ON might be less severe in seronegative patients.21,23,29,30<\/sup><\/span>\u00a0Regarding acute visual symptoms, patients who were AQP4-IgG seropositive have a lower score in visual functional system evaluation, a more severe optic disc oedema and a higher risk of subsequent ON attacks.31<\/sup><\/span>\u00a0However, the long-term prognosis was revealed to be similar in patients with and without AQP4-IgG positivity.26<\/sup><\/span><\/p>\n

Some authors reported controversial findings about onset symptoms in patients with seronegative NMOSD. Some of these publications suggested that bilateral ON isolated or in association with LETM is the most frequent onset phenotype.23,30<\/sup><\/span>\u00a0However, other studies demonstrated myelitis attacks as the most common first clinical presentation.25,32<\/sup><\/span>\u00a0In addition, brainstem lesions, such as area postrema lesions, appear to be more frequent in AQP4-IgG-positive NMOSD.9,25,30,32\u201334<\/sup><\/span>\u00a0The disease course of NMOSD comprizes recurrent attacks in about 95% of the patients, but this is biased by the AQP4-IgG-positive cases.35<\/sup><\/span>\u00a0Patients who are seronegative for AQP4-IgG have a higher tendency of monophasic disease or a lower number of subsequent acute attacks.23,25,26,29,32,33<\/sup><\/span>\u00a0In MOGAD, comparative studies showed that unilateral ON isolated or associated with myelitis is the most frequent onset symptom, and a recurrent clinical course with ON attacks is commonly observed.26<\/sup><\/span><\/p>\n

Regarding the radiological pattern, some studies did not find significant differences between patients with seropositive and seronegative NMOSD, with cervicothoracic myelitis seen in both groups.26,29<\/sup><\/span>\u00a0Nevertheless, in other studies, LETM was more frequent in patients who were AQP4-IgG positive,23,32<\/sup><\/span>\u00a0while there was no difference in the number of lesions in supratentorial and infratentorial regions based on the AQP4-IgG status.23<\/sup><\/span>\u00a0A common radiological pattern of ON found in patients with NMOSD is a bilateral, posterior and intracranial inflammatory lesion of the optic nerves, which may be extensive lesions with inflammation occurring up to the optic chiasm. In MOGAD cases, patients present with\u00a0magnetic resonance imaging<\/span>\u00a0(MRI) features, showing ON associated with perineural oedema, short myelitis and fluffy, extensive, acute disseminated encephalomyelitis (ADEM)-like lesions in supratentorial regions.12,36\u201338<\/sup><\/span><\/p>\n

In 2015, the international consensus diagnostic criteria for NMOSD were published.6<\/sup><\/span>\u00a0At least one core clinical characteristic is necessary for the diagnosis of patients with NMOSD with AQP4-IgG (detected by the CBA), which can be ON, acute myelitis, area postrema syndrome, acute brainstem syndrome, symptomatic narcolepsy or acute diencephalic clinical syndrome or symptomatic cerebral syndrome. Nevertheless, the diagnosis of seronegative NMOSD requires the presence of two core clinical characteristics occurring as a result of one or more clinical attacks. It is mandatory that one attack is related to ON, LETM or area postrema syndrome. In addition, the presence of attacks in more than one area and additional findings in the brain and\/or spinal cord MRI are essential for the diagnosis. A recent review emphasizes the importance of following the diagnostic criteria, as a diagnosis can be made after one clinical attack in those who are AQP4-IgG positive.33<\/sup><\/span><\/p>\n

The CBA for AQP4-IgG is the gold-standard method for the detection of these antibodies. The antibody titres can vary over time, depending on the disease activity and treatment.33,39,40<\/sup><\/span>\u00a0In one study, around 30% of patients initially negative for AQP4-IgG by CBA had a positive result in a mean interval of 36 weeks from the disease onset. Some authors recommend retesting AQP4-IgG during an acute attack or within 3 months after the last attack.34<\/sup><\/span><\/p>\n

Pathogenesis<\/span><\/h1>\n

Almost all the current knowledge about the disease mechanism related to NMOSD is associated with AQP4-IgG.3<\/sup><\/span>\u00a0These antibodies selectively bind to aquaporin-4 water channels, mainly M23 isoforms,41<\/sup><\/span>\u00a0which are more expressed at the level of astrocytic end-foot processes. Primary astrocytic damage is evident in immunohistochemistry analyses,42<\/sup><\/span>\u00a0while myelin and axonal damage appears as secondary events of the disease.42\u201344<\/sup><\/span>\u00a0This explains the presence of high levels of glial fibrillary acidic protein (GFAP) found in the cerebrospinal fluid (CSF) of patients with NMOSD, which can have correlations with disability and lesion length in myelitis.44\u201347<\/sup><\/span><\/p>\n

However, there is an information gap in the pathogenesis of patients with seronegative AQP4-IgG, as the astrocytic damage is not as clear as it is found in patients who were seropositive.5,24<\/sup><\/span>\u00a0Purified IgG from patients who were seronegative was not associated with the reproduction of typical NMOSD pathology with astrocytic damage.48 <\/sup><\/span>Nevertheless, cellular responses against AQP4, such as Th17 cells, may play a role in patients with seronegative NMOSD.46,49<\/sup><\/span><\/p>\n

The main characteristic feature of the CSF in patients with NMOSD is pleocytosis, with the presence of neutrophils and eosinophils. Oligoclonal bands may be found in up to 10\u201315% of cases.9,30,50\u201352<\/sup><\/span>\u00a0Furthermore, some studies demonstrated differences in serum and CSF biomarkers, such as GFAP and S100B levels, between patients who were seronegative and seropositive. The authors found that these protein levels were higher in patients with seropositive AQP4-IgG.53<\/sup><\/span>\u00a0However, in another study, no differences were found in GFAP levels, in the CSF and serum, between patients with seropositive and seronegative NMOSD.54<\/sup><\/span><\/p>\n

Management, current treatment options and treatment advances<\/span><\/h1>\n

The aim of NMOSD management is to treat acute attacks, prevent further attacks and reduce the disease-related burden in patients. The treatment of AQP4-IgG-positive NMOSD has improved over the last decades, but the alternatives for seronegative cases are still limited to off-label immunosuppressive drugs.<\/p>\n

Acute management<\/span><\/h1>\n

An optimized acute management of attacks promotes a greater recovery of symptoms in patients with NMOSD, mainly due to the suppression of the inflammatory response and CNS injury. The treatment of NMOSD attacks should be initiated early and aggressively, as this can reduce the disability accrual in NMOSD.55\u201357<\/sup><\/span><\/p>\n

The use of high doses of intravenous methylprednisolone (IVMP), 1 g\/day for 3\u20137 days, followed by oral corticosteroid therapy, may be the first-line acute treatment, considering that about 35% of patients may show good recovery.58\u201360<\/sup><\/span>\u00a0However, it is common to have a poor response to corticosteroids, requiring the use of five to seven sessions of therapeutic plasma exchange (PLEX) or immune adsorption (IA) on alternate days.55,61<\/sup><\/span>\u00a0PLEX\/IA can be used as a first choice in severe or disabling attacks, as some studies suggest that a greater response can be observed with PLEX\/IA when compared with treatment limited to IVMP.59,60,62<\/sup><\/span>\u00a0In previous studies, PLEX\/IA in association with IVMP showed better recovery of symptoms in 65% of patients with NMOSD.63<\/sup><\/span><\/p>\n

There are no data about the difference between the acute treatment of attacks in patients with seronegative and seropositive AQP4-IgG. Some preliminary studies demonstrated the benefits of intravenous human IgG, mainly associated with IVMP. However, this recommendation is still controversial.64<\/sup><\/span><\/p>\n

Attack prevention treatment<\/span><\/h1>\n

Prevention of attacks is recommended for all patients diagnosed with NMOSD, especially those with recurrent attacks. The aim is to avoid new attacks associated with the accrual of neurological disabilities. After 2019, three drugs were approved for AQP4-IgG-positive NMOSD. However, no drugs have been approved for patients who were seronegative.<\/p>\n

Over the last decades, drugs, such as azathioprine (AZA), mycophenolate mofetil (MMF), tacrolimus, mitoxantrone and cyclophosphamide, have been used as off-label preventive treatments for these patients, with previous studies showing a reduction in annualized relapse rate (ARR).65\u201377<\/sup><\/span>\u00a0The initial effect on immunosuppression by AZA and MMF starts within 4\u20136 months, therefore, it is common to use oral corticosteroids for the initial treatment period.54 <\/sup><\/span>Previous studies have reported a significant decrease in relapses and the disability level related to AZA.67,78,79<\/sup><\/span>\u00a0In 2017, a study demonstrated that the use of MMF was effective and safe as a first-line treatment for patients with NMOSD, independent of the serology status of AQP4-IgG.80<\/sup><\/span>\u00a0In addition, another commonly used first-line therapy is rituximab (RTX), a monoclonal antibody that selectively depletes CD20+ B cells. This therapy requires\u00a0intravenous<\/span>\u00a0infusions every 6 months, and the biological effect may be monitored by CD19+ cell counting. RTX requires safety monitoring for immunoglobulin levels.81<\/sup><\/span>\u00a0A comparative study demonstrated a high efficacy of RTX in reducing attacks compared to placebo<\/span>.80,82<\/sup><\/span>\u00a0This treatment was associated\u00a0with decreased or stabilization of disability in 93<\/span>% and a 60<\/span>% reduction in the\u00a0<\/span>ARR<\/span>\u00a0in 5 years<\/span>.83<\/sup><\/span>\u00a0A greater efficacy of RTX has been reported when compared with AZA and MMF.75,76<\/sup><\/span>\u00a0Despite the evidence indicating some effects of these immunosuppressive drugs in reducing attacks and disability for patients with seropositive and seronegative NMOSD, RTX showed a greater association with relapse- free after long-term follow-up.84<\/sup><\/span><\/p>\n

Tocilizumab (TCZ), a monoclonal antibody against the interleukin-6 (IL-6) receptor, has also been used as an off-label preventive treatment option for patients with NMOSD.71,85<\/sup><\/span>\u00a0One study showed a decrease in clinical and radiological activity of the disease in patients with a previous use of RTX.85<\/sup><\/span>\u00a0In a comparative study with AZA (Tocilizumab vs Azathioprine in Neuromyelitis Optica Spectrum Disorders<\/span>\u00a0[TANGO] study;\u00a0ClinicalTrials.gov identifier:\u00a0NCT03350633<\/span><\/span>),86<\/sup><\/span>\u00a0TCZ was associated with a longer interval between attacks, as well as a reduction in the ARR.\u00a0Ringelstein<\/span>\u00a0et al. studied the effect of TCZ in ARR decrease in patients with MOGAD and seropositive and seronegative AQP4-IgG NMOSD.87<\/sup><\/span>\u00a0This outcome was statistically significant for the first and second groups. However, it is worth emphasizing that the representative sample of the seronegative AQP4-IgG group was only 7 patients (MOGAD = 14; AQP4-IgG+ = 36), which may have limited further conclusions related to this group.<\/p>\n

Randomized controlled trials (RCTs) have recently been published demonstrating the efficacy of three monoclonal antibodies for the treatment of patients with AQP4-IgG-positive NMOSD, but the results were inconclusive for patients who were seronegative. These drugs target B cells, IL-6 receptor and complement system.88\u201390<\/sup><\/span>\u00a0The PREVENT trial (A Randomized Controlled Trial of Eculizumab in AQP4 Antibody-positive Participants With NMO<\/span>, ClinicalTrials.gov identifier:\u00a0NCT01892345<\/span>) analyzed the efficacy of eculizumab, a monoclonal antibody that blocks the complement protein C5 and prevents the activation of the complement cascade, in patients who were AQP4-IgG seropositive.88<\/sup><\/span>\u00a0Eculizumab was found to be effective in reducing ARR in 94% of the patients when compared with placebo, and 98% of the patients were relapse-free during a period of 12 months. Digala et al. reported a single patient with seronegative AQP4-IgG NMOSD treated with eculizumab, which was refractory for initial therapies. This patient was relapse-free for 12 months and showed an improvement in disability measured by the\u00a0Expanded Disability Status Scale<\/span>\u00a0(EDSS).91<\/sup><\/span><\/p>\n

SAkuraSky89<\/sup><\/span><\/sup>\u00a0(Efficacy and Safety Study of Satralizumab (SA237) as Add-on Therapy to Treat Participants With Neuromyelitis Optica (NMO) and NMO Spectrum Disorder,\u00a0ClinicalTrials.gov identifier:\u00a0<\/span>NCT02028884)\u00a0<\/span><\/span>analysed the effect of satralizumab, an IL-6 receptor blocker, as an add-on therapy for AZA, MMF and oral corticosteroids in patients with NMOSD. The study sample included 70% of seropositive AQP4-IgG, and the remaining were patients who were seronegative. Satralizumab was associated with a relapse-risk reduction in 79% of patients who were seropositive when compared with placebo. Positive outcomes were detected for at least 21 months in the long-term follow-up study with patients who were seropositive.92<\/sup><\/span>\u00a0However, there was no significant difference in outcomes for patients with seronegative NMOSD when compared with the placebo group. In a second RCT (SAkuraStar; Efficacy and Safety Study of Satralizumab (SA237) as Monotherapy to Treat Participants With NMO and NMOSD, ClinicalTrials.gov identifier: NCT02073279\u00a0<\/span>), satralizumab was evaluated as a monotherapy for patients with NMOSD, both seropositive and seronegative AQP4-IgG, compared with placebo.93<\/sup><\/span>\u00a0A subgroup analysis suggests that satralizumab reduced the risk of relapse in seropositive AQP4-IgG. However, there is insufficient evidence to indicate a risk reduction for the seronegative subgroup, mainly due to a greater degree of disease heterogeneity, as well as the small sample size (n=24).93<\/sup><\/span>\u00a0The same tendency was found in a study published in 2021, which evaluated the efficacy of satralizumab in patients with seropositive and seronegative AQP4-IgG. In the seropositive subgroup, 77% of patients who received satralizumab were relapse-free in a period of 24 months when compared with placebo subgroup (41%). Nonetheless, in the seronegative subgroup, 63% of patients using satralizumab were relapse-free for the same period when compared with 78% of the placebo group.92<\/sup><\/span><\/p>\n

Monotherapy with inebilizumab, a monoclonal antibody depleting CD19+ B cells, was compared with placebo in the\u00a0N-MOmentum<\/span>\u00a0study<\/span>\u00a0(A Clinical Research Study of Inebilizumab in Neuromyelitis Optica Spectrum Disorders, ClinicalTrials.gov identifier:\u00a0NCT02200770<\/span>).<\/span>90<\/sup><\/span>\u00a0Inebilizumab was associated with a relapse-risk reduction of\u00a0<\/span>73%\u00a0during a period of\u00a0<\/span>6 months. Despite the inclusion of\u00a0<\/span>patients with\u00a0seropositive and seronegative AQP4-IgG<\/span>, the clinical trial could not find benefits in the second subgroup, but it may be due to<\/span>\u00a0the small sample size (<\/span>n=16).\u00a0<\/span>A descriptive study\u00a0<\/span>of\u00a0these seronegative patients using\u00a0<\/span>inebilizumab showed an apparent decrease\u00a0<\/span>in\u00a0ARR<\/span>\u00a0when compared\u00a0<\/span>with\u00a0<\/span>the\u00a0placebo subgroup, but\u00a0<\/span>the\u00a0results were<\/span>\u00a0not stati<\/span>stically significant.<\/span>94<\/sup><\/span>\u00a0A long-term efficacy study supports the efficacy results reported in the initial study, in which\u00a0<\/span>87.7%\u00a0of\u00a0<\/span>patients who were\u00a0AQP4-IgG positive<\/span>\u00a0continued inebilizumab<\/span>\u00a0and\u00a0<\/span>83.4%\u00a0of patients who switched from placebo to inebilizumab<\/span>\u00a0were relapse-free during the extension study.<\/span>95<\/sup><\/span><\/p>\n

Ravulizumab is another monoclonal antibody recently approved for the treatment of patients with NMOSD. It is a humanized antibody that binds to the same complement component C5 epitope as\u00a0<\/a>eculizumab.96<\/sup><\/span>\u00a0The CHAMPION-NMOSD study (An Efficacy and Safety Study of Ravulizumab in Adult Participants With NMOSD, ClinicalTrials.gov identifier: NCT04201262) selected only patients with seropositive AQP4-IgG NMOSD to receive treatment with\u00a0<\/a>ravulizumab and compared them with the placebo control group from the PREVENT study. All patients with AQP4-IgG-positive NMOSD treated with the ravulizumab group were relapse-free compared with 20 patients in the PREVENT placebo group, in a median follow-up period of 73.5 weeks.97<\/sup><\/span><\/p>\n

Despite the lack of significant results for patients with seronegative AQP4-IgG NMOSD in these pivotal studies, some authors consider that, based on the known immunopathogenic mechanisms of NMOSD versus other autoimmune CNS diseases, treatments targeting specific mechanisms, such as complement inhibition, may be more restricted to AQP4-IgG-seropositive NMOSD.98<\/sup><\/span>\u00a0Previous studies that included patients who were AQP4-IgG seronegative are described in\u00a0Table 1<\/em><\/span>.86,89,90,93<\/sup><\/span><\/p>\n

\n

Table 1: <\/span>Monoclonal antibodies evaluated in patients with AQP4-IgG-seronegative NMOSD<\/p>\n

\n\n\n\n\n\n\n\n\n\n\n\n
\n

Study name<\/span><\/b><\/p>\n<\/td>\n

\n

TANGO86<\/sup><\/span><\/b><\/p>\n<\/td>\n

\n

N-MOmentum90<\/sup><\/span><\/b><\/p>\n<\/td>\n

\n

SAkuraSky89<\/sup><\/span><\/b><\/p>\n<\/td>\n

\n

SAkuraStar93<\/sup><\/span><\/b><\/p>\n<\/td>\n<\/tr>\n<\/thead>\n

\n

Drug<\/span><\/p>\n<\/td>\n

\n

TCZ versus AZA<\/p>\n<\/td>\n

\n

Inebilizumab<\/p>\n<\/td>\n

\n

Satralizumab<\/p>\n<\/td>\n

\n

Satralizumab<\/p>\n<\/td>\n<\/tr>\n

\n

Mechanism of action<\/span><\/p>\n<\/td>\n

\n

TCZ is an anti-IL6 receptor; AZA prevents DNA replication<\/p>\n<\/td>\n

\n

Anti-CD19<\/p>\n<\/td>\n

\n

Anti-IL6 receptor<\/p>\n<\/td>\n

\n

Anti-IL6 receptor<\/p>\n<\/td>\n<\/tr>\n

\n

Dose<\/span><\/p>\n<\/td>\n

\n

TCZ: 8 mg\/kg IV 4\/4 weeks<\/p>\n

AZA: 2 to 3 mg\/kg\/day oral<\/p>\n<\/td>\n

\n

300 mg IV 2 weeks apart; then 6\/6 months<\/p>\n<\/td>\n

\n

120 mg SC on weeks 0, 2 and 4; then 4\/4 weeks<\/p>\n<\/td>\n

\n

120 mg SC on weeks 0, 2 and 4; then 4\/4 weeks<\/p>\n<\/td>\n<\/tr>\n

\n

AQP4-IgG status<\/span><\/span><\/p>\n<\/td>\n

\n

TCZ: 85% AQP4-IgG+<\/p>\n

AZA: 90% AQP4-IgG+<\/p>\n<\/td>\n

\n

93% AQP4-IgG+<\/p>\n<\/td>\n

\n

70% AQP4-IgG+<\/p>\n<\/td>\n

\n

70% AQP4-IgG+<\/p>\n<\/td>\n<\/tr>\n

\n

Total relapse rate<\/span><\/p>\n<\/td>\n

\n

TCZ: 8\/59 (14%)<\/p>\n

AZA: 28\/59 (47%)<\/p>\n<\/td>\n

\n

Inebilizumab: 21\/174 (12%)<\/p>\n

Placebo: 22\/56 (39%)<\/p>\n<\/td>\n

\n

Satralizumab: 8\/41 (20%)<\/p>\n

Placebo: 18\/42 (43%)<\/p>\n<\/td>\n

\n

Satralizumab: 19\/63 (30%)<\/p>\n

Placebo: 16\/32 (50%)<\/p>\n<\/td>\n<\/tr>\n

\n

Relapse rate in patients who were AQP4-IgG-<\/span><\/p>\n<\/td>\n

\n

TCZ: 2\/9 (22%)<\/p>\n

AZA: 3\/6 (50%)<\/p>\n<\/td>\n

\n

Inebilizumab: 3\/17 (17%)<\/p>\n

Placebo: 0\/4<\/p>\n<\/td>\n

\n

Satralizumab: 5\/14 (36%)<\/p>\n

Placebo: 6\/14 (43%)<\/p>\n<\/td>\n

\n

Satralizumab: 10\/22 (46%)<\/p>\n

Placebo: 3\/9 (33%)<\/p>\n<\/td>\n<\/tr>\n

\n

Total relapse-free at 96 weeks<\/p>\n<\/td>\n

\n

Not applicable<\/p>\n<\/td>\n

\n

Not applicable<\/p>\n<\/td>\n

\n

Satralizumab:<\/p>\n

78%<\/p>\n

Placebo: 59%<\/p>\n<\/td>\n

\n

Satralizumab:<\/p>\n

72%<\/p>\n

Placebo: 51%<\/p>\n<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n<\/div>\n

\n
\n

AQP4-IgG<\/span>\u00a0=\u00a0aquaporin-4-immunoglobulin G<\/span>;<\/span>AQP4-IgG+<\/span>\u00a0=\u00a0aquaporin-4-immunoglobulin G positive<\/span>;<\/span>AQP4-IgG-<\/span>\u00a0=\u00a0aquaporin-4-immunoglobulin G negative<\/span>;<\/span>AZA<\/span>\u00a0=\u00a0azathioprine<\/span>;<\/span>IL<\/span>\u00a0=\u00a0interleukin<\/span>;<\/span>IV<\/span>\u00a0=\u00a0intravenous<\/span>;<\/span>NMOSD<\/span>\u00a0=\u00a0neuromyelitis optica spectrum disorder<\/span>;<\/span>SC<\/span>\u00a0=\u00a0subcutaneous<\/span>;<\/span>TCZ<\/span>\u00a0=\u00a0tocilizumab<\/span>.<\/span><\/em><\/p>\n<\/div>\n<\/div>\n<\/div>\n

With regard to future perspectives, an anti-CD20 monoclonal antibody, ublituximab, is being evaluated in combination with IVMP for the acute management of ON and myelitis attacks. A preliminary phase I study showed a reduction in disability status over a period of 90 days.99<\/sup><\/span>\u00a0Bortezomib, a 26S proteasome inhibitor approved for haematological neoplasms, was related to a relapse-free period of 12 months for four out of five patients with NMOSD and a decrease in AQP4-IgG levels.100<\/sup><\/span>\u00a0Aquaporumab, a recombinant human monoclonal antibody against AQP4, was effective in reducing NMOSD lesions in\u00a0in vitro<\/em>\u00a0models.101<\/sup><\/span>\u00a0In addition, stem cell-based therapies are being investigated. An open-label cohort study, which included 11 patients with seropositive and one patient with seronegative AQP4-IgG, showed a relapse-free period of 5 years in 80% of patients, improvement in disability and seroconversion of patients from positive AQP4-IgG to negative.102<\/sup><\/span>\u00a0Most recently, a meta-analysis involving 31 patients with NMOSD demonstrated that 76% of the participants were attack-free during the evaluation period with stem cells.103<\/sup><\/span><\/p>\n

Prognosis<\/span><\/h1>\n

NMOSD is characterized by an\u00a0accumulation of attack-related disability in visual, motor, sensory and autonomic dysfunction.<\/span>\u00a0The attacks are characterized by a new or worsening of neurological symptoms over days with frequent partial recovery despite treatments. Despite this characteristic, the early initiation of acute and preventive treatment has improved the long-term outcomes in patients with NMOSD. There is no clear progressive phenotype for NMOSD as seen in patients with MS.104<\/sup><\/span><\/p>\n

NMOSD prognosis is predicted by factors such as the age of symptom onset, number of attacks during the first 2 years, first attack severity, association with other autoimmune pathologies and serology status of AQP-IgG.105\u2013108<\/sup><\/span>\u00a0Previous studies showed a lower rate of recovery of visual attacks in patients with seropositive AQP4-IgG when compared with patients who were seronegative.109,110<\/sup><\/span>\u00a0A prospective study of 29 patients presenting with isolated LETM found that 55% of the patients seropositive for AQP4-IgG relapsed within 1 year, while none of the patients who were seronegative relapsed.111<\/sup><\/span>\u00a0It is important to mention that there are differences in the technique of antibody detection (CBA versus enzyme-linked immunosorbent assay) and a mixture of patients with seropositive and seronegative AQP4-IgG, with the last group having some MOGAD cases.<\/p>\n

Conclusions<\/span><\/h1>\n

In conclusion, seronegative NMOSD is a challenging diagnosis. It requires the exclusion of an extensive list of alternative diagnoses, and additional clinical and MRI features are required by the current NMOSD diagnostic criteria. Despite the limitations of current studies in patients with seronegative NMOSD, therapeutic response for new drugs appears to be less clear compared with AQP4-IgG-positive NMOSD, indicating that a possible distinct disease mechanism (not related to AQP4 or AQP4-IgG) may be associated with those patients. Further research is required to discover other biomarkers and new treatments for this orphan group of patients.<\/p>\n","protected":false},"excerpt":{"rendered":"

Neuromyelitis optica spectrum disorder (NMOSD) is a rare inflammatory autoimmune disease of the central nervous system (CNS) with a worldwide distribution.1\u00a0The first clinical description of NMOSD was made a century ago by Devic and Gault, who documented patients with monophasic and bilateral optic neuritis (ON) and myelitis.2\u00a0A few decades ago, NMOSD was considered a variant […]<\/p>\n","protected":false},"author":142327,"featured_media":27670,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_relevanssi_hide_post":"","_relevanssi_hide_content":"","_relevanssi_pin_for_all":"","_relevanssi_pin_keywords":"","_relevanssi_unpin_keywords":"","_relevanssi_related_keywords":"","_relevanssi_related_include_ids":"","_relevanssi_related_exclude_ids":"","_relevanssi_related_no_append":"","_relevanssi_related_not_related":"","_relevanssi_related_posts":"","_relevanssi_noindex_reason":"","rank_math_lock_modified_date":false,"footnotes":""},"categories":[1],"tags":[],"class_list":["post-74562","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-uncategorized","vocabulary_1-neuroimmunology","journal-touchreviews-neurology"],"acf":{"wpcf-article_introduction":"","wpcf-article_abstract":"Neuromyelitis optica spectrum disorder (NMOSD) is a rare inflammatory disease of the central nervous system, which is characterized by severe and\/or recurrent attacks of myelitis, optic neuritis and area postrema syndrome in most of the patients. NMOSD is strongly associated with serum positivity for\u00a0aquaporin-4<\/span>-<\/span>immunoglobulin G<\/span>\u00a0(<\/span>AQP4<\/span>-<\/span>IgG<\/span>)<\/span>. Although some cases may be diagnosed as NMOSD without AQP4-IgG positivity, additional clinical and neuroimaging features are required by the current international panel for NMOSD diagnostic criteria. These seronegative cases also require the exclusion of an extensive list of alternative diagnoses, including myelin oligodendrocyte glycoprotein (MOG)-IgG-associated disease. We defined and used the term seronegative NMOSD for those patients who fulfil the NMOSD criteria without AQP4-IgG and MOG-IgG seropositivity. The evidence for immune-mediated astrocyte injury caused by both antibody- and complement-dependent cytotoxicity in patients with seronegative NMOSD is not well established compared with those with AQP4-IgG positivity. The therapeutic response to treatments approved for AQP4-IgG-positive NMOSD, such as inebilizumab and satralizumab, also seems to be less clear in seronegative cases, indicating that distinct disease mechanisms may be associated with these patients.","wpcf-article_keywords":"Neuromyelitis optica<\/span>,\u00a0aquaporin-4<\/span>,\u00a0demyelinating diseases<\/span>,\u00a0clinical features<\/span>,\u00a0immunosuppression therapy<\/span>,\u00a0monoclonal antibodies<\/span>","wpcf-article_citation_override":"touchREVIEWS in Neurology.<\/i> 2024;20(1):10-15","wpcf-compliance-with-ethics":"

\r\n
\r\n
\r\n

This article involves a review of the literature and did not involve any studies with human or animal subjects performed by any of the authors.<\/p>\r\n\r\n<\/div>\r\n<\/div>\r\n<\/div>\r\n

<\/div>","wpcf-article_disclosure":"
\r\n
\r\n
\r\n

C\u00e1ssia Elisa Marin and Douglas Kazutoshi Sato have no financial or non-financial relationships or activities to declare in relation to this article.<\/p>\r\n\r\n<\/div>\r\n<\/div>\r\n<\/div>\r\n

<\/div>","wpcf-review_process":"
\r\n
\r\n
\r\n

Double-blind peer review.<\/p>\r\n\r\n<\/div>\r\n<\/div>\r\n<\/div>\r\n

<\/div>","wpcf-authorship":"
\r\n
\r\n
\r\n

The named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship of this manuscript, take responsibility for the integrity of the work as a whole and have given final approval for the version to be published.<\/p>\r\n\r\n<\/div>\r\n<\/div>\r\n<\/div>\r\n

<\/div>","wpcf-article_correspondence":"

Douglas Kazutoshi<\/span>\u00a0Sato<\/span><\/span>,\u00a0Avenida Ipiranga 6681 pr\u00e9dio 40 sala 808<\/span>,\u00a0Porto Alegre, 90619-900<\/span>,\u00a0Brazil<\/span><\/span>;\u00a0douglas.sato@pucrs.br<\/span><\/p>\r\n\r\n

\r\n
<\/div>\r\n<\/div>","wpcf-article_support":"
\r\n
\r\n
\r\n

No funding was received in the publication of this article.<\/p>\r\n\r\n<\/div>\r\n<\/div>\r\n<\/div>","wpcf-open_access":"

\r\n
\r\n
\r\n

This article is freely accessible at touchNEUROLOGY.com \u00a9 Touch Medical Media 2024.<\/p>\r\n\r\n<\/div>\r\n<\/div>\r\n<\/div>\r\n

<\/div>","wpcf-article_pdf":"https:\/\/touchneurology.com\/wp-content\/uploads\/sites\/3\/2024\/01\/3.-touchNEURO-D-23-00030-Review-Sato-10-15-1.pdf","wpcf-article_pdf-gated":false,"wpcf-article_doi":"DOI: https:\/\/doi.org\/10.17925\/USN.2024.20.1.3","wpcf-old_nid":"","wpcf-article_image":"","wpcf-editor_choice":false,"wpcf-old_author_ids":"","wpcf-article_references":"

1.<\/span>\u00a0Wingerchuk<\/span>\u00a0DM<\/span><\/span>,\u00a0Lennon<\/span>\u00a0VA<\/span><\/span>,\u00a0Lucchinetti<\/span>\u00a0CF<\/span><\/span>,\u00a0et al<\/span>.\u00a0The spectrum of neuromyelitis optica<\/span>.\u00a0Lancet Neurol<\/em><\/span>.\u00a02007<\/span>;6<\/span>:805<\/span>\u201315<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/S1474-4422(07)70216-8<\/span>.<\/p>\r\n

2.<\/span>\u00a0Jarius<\/span>\u00a0S<\/span><\/span>,\u00a0Wildemann<\/span>\u00a0B<\/span><\/span>.\u00a0The history of neuromyelitis optica<\/span>.\u00a0J Neuroinflammation<\/em><\/span>.\u00a02013<\/span>;10<\/span>:8<\/span>.\u00a0DOI<\/span>:\u00a010.1186\/1742-2094-10-8<\/span>.<\/p>\r\n

3.<\/span>\u00a0Lennon<\/span>\u00a0VA<\/span><\/span>,\u00a0Wingerchuk<\/span>\u00a0DM<\/span><\/span>,\u00a0Kryzer<\/span>\u00a0TJ<\/span><\/span>,\u00a0et al<\/span>.\u00a0A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis<\/span>.\u00a0The Lancet<\/em><\/span>.\u00a02004<\/span>;364<\/span>:2106<\/span>\u201312<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/S0140-6736(04)17551-X<\/span>.<\/p>\r\n

4.<\/span>\u00a0Lennon<\/span>\u00a0VA<\/span><\/span>,\u00a0Kryzer<\/span>\u00a0TJ<\/span><\/span>,\u00a0Pittock<\/span>\u00a0SJ<\/span><\/span>,\u00a0et al<\/span>.\u00a0IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel<\/span>.\u00a0J Exp Med<\/em><\/span>.\u00a02005<\/span>;202<\/span>:473<\/span>\u20137<\/span>.\u00a0DOI<\/span>:\u00a010.1084\/jem.20050304<\/span>.<\/p>\r\n

5.<\/span>\u00a0Fujihara<\/span>\u00a0K<\/span><\/span>,\u00a0Misu<\/span>\u00a0T<\/span><\/span>,\u00a0Nakashima<\/span>\u00a0I<\/span><\/span>,\u00a0et al<\/span>.\u00a0Neuromyelitis optica should be classified as an astrocytopathic disease rather than a demyelinating disease<\/span>.\u00a0Clinical & Exp Neuroim<\/em><\/span>.\u00a02012<\/span>;3<\/span>:58<\/span>\u201373<\/span>.\u00a0DOI<\/span>:\u00a010.1111\/j.1759-1961.2012.00030.x<\/span>.<\/p>\r\n

6.<\/span>\u00a0Wingerchuk<\/span>\u00a0DM<\/span><\/span>,\u00a0Banwell<\/span>\u00a0B<\/span><\/span>,\u00a0Bennett<\/span>\u00a0JL<\/span><\/span>,\u00a0et al<\/span>.\u00a0International consensus diagnostic criteria for neuromyelitis optica spectrum disorders<\/span>.\u00a0Neurology<\/em><\/span>.\u00a02015<\/span>;85<\/span>:177<\/span>\u201389<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0000000000001729<\/span>.<\/p>\r\n

7.<\/span>\u00a0Hamid<\/span>\u00a0SHM<\/span><\/span>,\u00a0Whittam<\/span>\u00a0D<\/span><\/span>,\u00a0Mutch<\/span>\u00a0K<\/span><\/span>,\u00a0et al<\/span>.\u00a0What proportion of Aqp4-IgG-negative NMO spectrum disorder patients are MOG-IgG positive? A cross sectional study of 132 patients<\/span>.\u00a0J Neurol<\/em><\/span>.\u00a02017<\/span>;264<\/span>:2088<\/span>\u201394<\/span>.\u00a0DOI<\/span>:\u00a010.1007\/s00415-017-8596-7<\/span>.<\/p>\r\n

8.<\/span>\u00a0Pr\u00f6bstel<\/span>\u00a0A-K<\/span><\/span>,\u00a0Rudolf<\/span>\u00a0G<\/span><\/span>,\u00a0Dornmair<\/span>\u00a0K<\/span><\/span>,\u00a0et al<\/span>.\u00a0Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype<\/span>.\u00a0J Neuroinflammation<\/em><\/span>.\u00a02015<\/span>;12<\/span>:46<\/span>.\u00a0DOI<\/span>:\u00a010.1186\/s12974-015-0256-1<\/span>.<\/p>\r\n

9.<\/span>\u00a0Sato<\/span>\u00a0DK<\/span><\/span>,\u00a0Callegaro<\/span>\u00a0D<\/span><\/span>,\u00a0Lana-Peixoto<\/span>\u00a0MA<\/span><\/span>,\u00a0et al<\/span>.\u00a0Distinction between MOG antibody-positive and Aqp4 antibody-positive Nmospectrumdisorders<\/span>.\u00a0Neurology<\/em><\/span>.\u00a02014<\/span>;82<\/span>:474<\/span>\u201381<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0000000000000101<\/span>.<\/p>\r\n

10.<\/span>\u00a0Kitley<\/span>\u00a0J<\/span><\/span>,\u00a0Woodhall<\/span>\u00a0M<\/span><\/span>,\u00a0Waters<\/span>\u00a0P<\/span><\/span>,\u00a0et al<\/span>.\u00a0Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype<\/span>.\u00a0Neurology<\/em><\/span>.\u00a02012<\/span>;79<\/span>:1273<\/span>\u20137<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0b013e31826aac4e<\/span>.<\/p>\r\n

11.<\/span>\u00a0Papais-Alvarenga<\/span>\u00a0RM<\/span><\/span>,\u00a0Neri<\/span>\u00a0VC<\/span><\/span>,\u00a0de Ara\u00fajo E Ara\u00fajo<\/span>\u00a0ACR<\/span><\/span>,\u00a0et al<\/span>.\u00a0Lower frequency of antibodies to MOG in Brazilian patients with demyelinating diseases: An ethnicity influence<\/span>.\u00a0Mult Scler Relat Disord<\/em><\/span>.\u00a02018<\/span>;25<\/span>:87<\/span>\u201394. <\/span>DOI<\/span>:\u00a010.1016\/j.msard.2018.07.026<\/span>.<\/p>\r\n

12.<\/span>\u00a0Kitley<\/span>\u00a0J<\/span><\/span>,\u00a0Waters<\/span>\u00a0P<\/span><\/span>,\u00a0Woodhall<\/span>\u00a0M<\/span><\/span>,\u00a0et al<\/span>.\u00a0Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: A comparative study<\/span>.\u00a0JAMA Neurol. <\/em><\/span>2014<\/span>;71<\/span>:276. <\/span>DOI<\/span>:\u00a010.1001\/jamaneurol.2013.5857<\/span>.<\/p>\r\n

13.<\/span>\u00a0Jarius<\/span>\u00a0S<\/span><\/span>,\u00a0Ruprecht<\/span>\u00a0K<\/span><\/span>,\u00a0Kleiter<\/span>\u00a0I<\/span><\/span>,\u00a0et al<\/span>.\u00a0MOG-IgG in NMO and related disorders: A multicenter study of 50 patients. part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome<\/span>.\u00a0J Neuroinflammation<\/em><\/span>.\u00a02016<\/span>;13<\/span>:280<\/span>.\u00a0DOI<\/span>:\u00a010.1186\/s12974-016-0718-0<\/span>.<\/p>\r\n

14.<\/span>\u00a0Fujihara<\/span>\u00a0K<\/span><\/span>,\u00a0Sato<\/span>\u00a0DK<\/span><\/span>,\u00a0Nakashima<\/span>\u00a0I<\/span><\/span>,\u00a0et al<\/span>.\u00a0MOG-IgG-associated disease: NA overview<\/span>.\u00a0Clin Exp Neuroimmunol. <\/em><\/span>2018<\/span>;9<\/span>:48<\/span>\u201355. <\/span>DOI<\/span>:\u00a010.1111\/cen3.12434<\/span>.<\/p>\r\n

15.<\/span>\u00a0Dos Passos<\/span>\u00a0GR<\/span><\/span>,\u00a0Oliveira<\/span>\u00a0LM<\/span><\/span>,\u00a0da Costa<\/span>\u00a0BK<\/span><\/span>,\u00a0et al<\/span>.\u00a0MOG-IgG-associated optic neuritis, encephalitis, and Myelitis (MONEM): Lessons learned from neuromyelitis optica spectrum disorder<\/span>.\u00a0Front Neurol. <\/em><\/span>2018<\/span>;9<\/span>:217. <\/span>DOI<\/span>:\u00a010.3389\/fneur.2018.00217<\/span>.<\/p>\r\n

16.<\/span>\u00a0Jacob<\/span>\u00a0A<\/span><\/span>,\u00a0Panicker<\/span>\u00a0J<\/span><\/span>,\u00a0Lythgoe<\/span>\u00a0D<\/span><\/span>,\u00a0et al<\/span>.\u00a0The epidemiology of neuromyelitis optica amongst adults in the merseyside county of United Kingdom<\/span>.\u00a0J Neurol<\/em><\/span>.\u00a02013<\/span>;260<\/span>:2134<\/span>\u20137<\/span>.\u00a0DOI<\/span>:\u00a010.1007\/s00415-013-6926-y<\/span>.<\/p>\r\n

17.<\/span>\u00a0Hor<\/span>\u00a0JY<\/span><\/span>,\u00a0Asgari<\/span>\u00a0N<\/span><\/span>,\u00a0Nakashima<\/span>\u00a0I<\/span><\/span>,\u00a0et al<\/span>.\u00a0Epidemiology of neuromyelitis optica spectrum disorder and its prevalence and incidence worldwide<\/span>.\u00a0Front Neurol<\/em><\/span>.\u00a02020<\/span>;11<\/span>:501<\/span>.\u00a0DOI<\/span>:\u00a010.3389\/fneur.2020.00501<\/span>.<\/p>\r\n

18.<\/span>\u00a0Gold<\/span>\u00a0SM<\/span><\/span>,\u00a0Willing<\/span>\u00a0A<\/span><\/span>,\u00a0Leypoldt<\/span>\u00a0F<\/span><\/span>,\u00a0et al<\/span>.\u00a0Sex differences in autoimmune disorders of the central nervous system<\/span>.\u00a0Semin Immunopathol<\/em><\/span>.\u00a02019<\/span>;41<\/span>:177<\/span>\u201388<\/span>.\u00a0DOI<\/span>:\u00a010.1007\/s00281-018-0723-8<\/span>.<\/p>\r\n

19.<\/span>\u00a0Jurynczyk<\/span>\u00a0M<\/span><\/span>,\u00a0Messina<\/span>\u00a0S<\/span><\/span>,\u00a0Woodhall<\/span>\u00a0MR<\/span><\/span>,\u00a0et al<\/span>.\u00a0Clinical presentation and prognosis in MOG-antibody disease: A UK study<\/span>.\u00a0Brain<\/em><\/span>.\u00a02017<\/span>;140<\/span>:3128<\/span>\u201338<\/span>.\u00a0DOI<\/span>:\u00a010.1093\/brain\/awx276<\/span>.<\/p>\r\n

20.<\/span>\u00a0Cobo-Calvo<\/span>\u00a0A<\/span><\/span>,\u00a0Ruiz<\/span>\u00a0A<\/span><\/span>,\u00a0Maillart<\/span>\u00a0E<\/span><\/span>,\u00a0et al<\/span>.\u00a0Clinical spectrum and prognostic value of CNS MOG autoimmunity in adults: The MOGADOR study<\/span>.\u00a0Neurology<\/em><\/span>.\u00a02018<\/span>;90<\/span>:e1858<\/span>\u201369<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0000000000005560<\/span>.<\/p>\r\n

21.<\/span>\u00a0Marignier<\/span>\u00a0R<\/span><\/span>,\u00a0Bernard-Valnet<\/span>\u00a0R<\/span><\/span>,\u00a0Giraudon<\/span>\u00a0P<\/span><\/span>,\u00a0et al<\/span>.\u00a0Aquaporin-4 antibody-negative neuromyelitis optica: Distinct assay sensitivity dependent entity<\/span>.\u00a0Neurology<\/em><\/span>.\u00a02013<\/span>;80<\/span>:2194<\/span>\u2013200<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0b013e318296e917<\/span>.<\/p>\r\n

22.<\/span>\u00a0Ketelslegers<\/span>\u00a0IA<\/span><\/span>,\u00a0Modderman<\/span>\u00a0PW<\/span><\/span>,\u00a0Vennegoor<\/span>\u00a0A<\/span><\/span>,\u00a0et al<\/span>.\u00a0Antibodies against aquaporin-4 in neuromyelitis optica: Distinction between recurrent and monophasic patients<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02011<\/span>;17<\/span>:1527<\/span>\u201330<\/span>.\u00a0DOI<\/span>:\u00a010.1177\/1352458511412995<\/span>.<\/p>\r\n

23.<\/span>\u00a0Jarius<\/span>\u00a0S<\/span><\/span>,\u00a0Ruprecht<\/span>\u00a0K<\/span><\/span>,\u00a0Wildemann<\/span>\u00a0B<\/span><\/span>,\u00a0et al<\/span>.\u00a0Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients<\/span>.\u00a0J Neuroinflammation<\/em><\/span>.\u00a02012<\/span>;9<\/span>:14<\/span>.\u00a0DOI<\/span>:\u00a010.1186\/1742-2094-9-14<\/span>.<\/p>\r\n

24.<\/span>\u00a0Fujihara<\/span>\u00a0K<\/span><\/span>,\u00a0Leite<\/span>\u00a0MI<\/span><\/span>.\u00a0Seronegative NMO: A sensitive Aqp4 antibody test clarifies clinical features and next challenges<\/span>.\u00a0Neurology<\/em><\/span>.\u00a02013<\/span>;80<\/span>:2176<\/span>\u20137<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0b013e318296ea22<\/span>.<\/p>\r\n

25.<\/span>\u00a0Sep\u00falveda<\/span>\u00a0M<\/span><\/span>,\u00a0Armangu\u00e9<\/span>\u00a0T<\/span><\/span>,\u00a0Sola-Valls<\/span>\u00a0N<\/span><\/span>,\u00a0et al<\/span>.\u00a0Neuromyelitis optica spectrum disorders: Comparison according to the phenotype and serostatus<\/span>.\u00a0Neurol Neuroimmunol Neuroinflamm<\/em><\/span>.\u00a02016<\/span>;3<\/span>:e225<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/NXI.0000000000000225<\/span>.<\/p>\r\n

26.<\/span>\u00a0Alves Do Rego<\/span>\u00a0C<\/span><\/span>,\u00a0Collongues<\/span>\u00a0N<\/span><\/span>.\u00a0Neuromyelitis optica spectrum disorders: Features of aquaporin-4, myelin oligodendrocyte glycoprotein and double-seronegative-mediated subtypes<\/span>.\u00a0Revue Neurologique<\/em><\/span>.\u00a02018<\/span>;174<\/span>:458<\/span>\u201370<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/j.neurol.2018.02.084<\/span>.<\/p>\r\n

27.<\/span>\u00a0Kim<\/span>\u00a0S-H<\/span><\/span>,\u00a0Kim<\/span>\u00a0W<\/span><\/span>,\u00a0Li<\/span>\u00a0XF<\/span><\/span>,\u00a0et al<\/span>.\u00a0Clinical spectrum of CNS aquaporin-4 autoimmunity<\/span>.\u00a0Neurology<\/em><\/span>.\u00a02012<\/span>;78<\/span>:1179<\/span>\u201385<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0b013e31824f8069<\/span>.<\/p>\r\n

28.<\/span>\u00a0Wang<\/span>\u00a0X<\/span><\/span>,\u00a0Chen<\/span>\u00a0X<\/span><\/span>,\u00a0Zhu<\/span>\u00a0C<\/span><\/span>,\u00a0et al<\/span>.\u00a0A multi-facet comparative analysis of neuromyelitis optica spectrum disorders in patients with seropositive and seronegative Aqp4-IgG<\/span>.\u00a0Medicine<\/em><\/span>.\u00a02018<\/span>;97<\/span>:e13100<\/span>.\u00a0DOI<\/span>:\u00a010.1097\/MD.0000000000013100<\/span>.<\/p>\r\n

29.<\/span>\u00a0Siritho<\/span>\u00a0S<\/span><\/span>,\u00a0Apiwattanakul<\/span>\u00a0M<\/span><\/span>,\u00a0Nakashima<\/span>\u00a0I<\/span><\/span>,\u00a0et al<\/span>.\u00a0Features of anti-aquaporin 4 antibody-seronegative Thai patients with neuromyelitis optica spectrum disorders: A comparison with seropositive cases<\/span>.\u00a0J Neurol Sci<\/em><\/span>.\u00a02014<\/span>;341<\/span>:17<\/span>\u201321<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/j.jns.2014.03.033<\/span>.<\/p>\r\n

30.<\/span>\u00a0van Pelt<\/span>\u00a0ED<\/span><\/span>,\u00a0Wong<\/span>\u00a0YYM<\/span><\/span>,\u00a0Ketelslegers<\/span>\u00a0IA<\/span><\/span>,\u00a0et al<\/span>.\u00a0Neuromyelitis optica spectrum disorders: Comparison of clinical and magnetic resonance imaging characteristics of Aqp4-IgG versus MOG-IgG seropositive cases in the Netherlands. <\/span>Eur J Neurol<\/em><\/span>.\u00a02016<\/span>;23<\/span>:580<\/span>\u20137<\/span>.\u00a0DOI<\/span>:\u00a010.1111\/ene.12898<\/span>.<\/p>\r\n

31.<\/span>\u00a0Lin<\/span>\u00a0N<\/span><\/span>,\u00a0Liu<\/span>\u00a0Q<\/span><\/span>,\u00a0Wang<\/span>\u00a0X<\/span><\/span>,\u00a0et al<\/span>.\u00a0Role of Aqp4 antibody serostatus and its prediction of visual outcome in neuromyelitis optica: A systematic review and meta-analysis<\/span>.\u00a0Protein Pept Lett<\/em><\/span>.\u00a02017<\/span>;24<\/span>:245<\/span>\u201352. <\/span>DOI<\/span>:\u00a010.2174\/0929866524666170110150436<\/span>.<\/p>\r\n

32.<\/span>\u00a0Kishk<\/span>\u00a0NA<\/span><\/span>,\u00a0Abdelfattah<\/span>\u00a0W<\/span><\/span>,\u00a0Shalaby<\/span>\u00a0NM<\/span><\/span>,\u00a0et al<\/span>.\u00a0The aquaporin4-IgG status and how it affects the clinical features and treatment response in NMOSD patients in Egypt<\/span>.\u00a0BMC Neurol<\/em><\/span>.\u00a02021<\/span>;21<\/span>:53<\/span>.\u00a0DOI<\/span>:\u00a010.1186\/s12883-021-02083-1<\/span>.<\/p>\r\n

33.<\/span>\u00a0Jarius<\/span>\u00a0S<\/span><\/span>,\u00a0Aktas<\/span>\u00a0O<\/span><\/span>,\u00a0Ayzenberg<\/span>\u00a0I<\/span><\/span>,\u00a0et al<\/span>.\u00a0Update on the diagnosis and treatment of neuromyelitsoptica spectrum disorders (NMOSD) \u2013 revised recommendations of the neuromyelitis optica study group (NEMOS)<\/span>.\u00a0J Neurol. <\/em><\/span>2023<\/span>;270<\/span>:3341<\/span>\u201368<\/span>.\u00a0DOI<\/span>:\u00a010.1007\/s00415-023-11634-0<\/span>.<\/p>\r\n

34.<\/span>\u00a0Chen<\/span>\u00a0X<\/span><\/span>,\u00a0Zhou<\/span>\u00a0J<\/span><\/span>,\u00a0Li<\/span>\u00a0R<\/span><\/span>,\u00a0et al<\/span>.\u00a0Disease course and outcomes in patients with the limited form of neuromyelitis optica spectrum disorders and negative Aqp4-IgG serology at disease onset: A prospective cohort study<\/span>.\u00a0J Clin Neurol. <\/em><\/span>2022<\/span>;18<\/span>:453<\/span>\u201362<\/span>.\u00a0DOI<\/span>:\u00a010.3988\/jcn.2022.18.4.453<\/span>.<\/p>\r\n

35.<\/span>\u00a0Kim<\/span>\u00a0S-H<\/span><\/span>,\u00a0Mealy<\/span>\u00a0MA<\/span><\/span>,\u00a0Levy<\/span>\u00a0M<\/span><\/span>,\u00a0et al<\/span>.\u00a0Racial differences in neuromyelitis optica spectrum disorder. <\/span>Neurology. <\/em><\/span>2018<\/span>;91<\/span>:e2089<\/span>\u201399. <\/span>DOI<\/span>:\u00a010.1212\/WNL.0000000000006574<\/span>.<\/p>\r\n

36.<\/span>\u00a0Jarius<\/span>\u00a0S<\/span><\/span>,\u00a0Ruprecht<\/span>\u00a0K<\/span><\/span>,\u00a0Kleiter<\/span>\u00a0I<\/span><\/span>,\u00a0et al<\/span>.\u00a0MOG-IgG in NMO and related disorders: A multicenter study of 50 patients. part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and longterm outcome<\/span>.\u00a0J Neuroinflammation<\/em><\/span>.\u00a02016<\/span>;13<\/span>:280<\/span>.\u00a0DOI<\/span>:\u00a010.1186\/s12974-016-0718-0<\/span>.<\/p>\r\n

37.<\/span>\u00a0Ramanathan<\/span>\u00a0S<\/span><\/span>,\u00a0Prelog<\/span>\u00a0K<\/span><\/span>,\u00a0Barnes<\/span>\u00a0EH<\/span><\/span>,\u00a0et al<\/span>.\u00a0Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02016<\/span>;22<\/span>:470<\/span>\u201382. <\/span>DOI<\/span>:\u00a010.1177\/1352458515593406<\/span>.<\/p>\r\n

38.<\/span>\u00a0Jarius<\/span>\u00a0S<\/span><\/span>,\u00a0Aboul-Enein<\/span>\u00a0F<\/span><\/span>,\u00a0Waters<\/span>\u00a0P<\/span><\/span>,\u00a0et al<\/span>.\u00a0Antibody to aquaporin-4 in the long-term course of neuromyelitis optica<\/span>.\u00a0Brain<\/em><\/span>.\u00a02008<\/span>;131<\/span>:3072<\/span>\u201380<\/span>.\u00a0DOI<\/span>:\u00a010.1093\/brain\/awn240<\/span>.<\/p>\r\n

39.<\/span>\u00a0Jarius<\/span>\u00a0S<\/span><\/span>,\u00a0Wildemann<\/span>\u00a0B<\/span><\/span>.\u00a0Aquaporin\u20104 antibodies (NMO \u2010 IgG) as a serological marker of neuromyelitis optica: A critical review of the literature<\/span>.\u00a0Brain Pathol<\/em><\/span>.\u00a02013<\/span>;23<\/span>:661<\/span>\u201383<\/span>.\u00a0DOI<\/span>:\u00a010.1111\/bpa.12084<\/span>.<\/p>\r\n

40.<\/span>\u00a0Kim<\/span>\u00a0W<\/span><\/span>,\u00a0Lee<\/span>\u00a0J-E<\/span><\/span>,\u00a0Li<\/span>\u00a0XF<\/span><\/span>,\u00a0et al<\/span>.\u00a0Quantitative measurement of anti-aquaporin-4 antibodies by enzyme-linked immunosorbent assay using purified recombinant human aquaporin-4<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02012<\/span>;18<\/span>:578<\/span>\u201386. <\/span>DOI<\/span>:\u00a010.1177\/1352458511424590<\/span>.<\/p>\r\n

41.<\/span>\u00a0Takahashi<\/span>\u00a0T<\/span><\/span>,\u00a0Fujihara<\/span>\u00a0K<\/span><\/span>,\u00a0Nakashima<\/span>\u00a0I<\/span><\/span>,\u00a0et al<\/span>.\u00a0Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: A study on antibody titre<\/span>.\u00a0Brain<\/em><\/span>.\u00a02007<\/span>;130<\/span>:1235<\/span>\u201343<\/span>.\u00a0DOI<\/span>:\u00a010.1093\/brain\/awm062<\/span>.<\/p>\r\n

42.<\/span>\u00a0Pereira<\/span>\u00a0WL de CJ<\/span><\/span>,\u00a0Reiche<\/span>\u00a0EMV<\/span><\/span>,\u00a0Kallaur<\/span>\u00a0AP<\/span><\/span>,\u00a0Kaimen-Maciel<\/span>\u00a0DR<\/span><\/span>.\u00a0Epidemiological, clinical and immunological characteristics of neuromyelitis optica: A review<\/span>.\u00a0J Neurol Sci<\/em><\/span>.\u00a02015<\/span>;355<\/span>:7<\/span>\u201317<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/j.jns.2015.05.034<\/span>.<\/p>\r\n

43.<\/span>\u00a0Fujihara<\/span>\u00a0K<\/span><\/span>.\u00a0Neuromyelitis optica and astrocytic damage in its pathogeneses<\/span>.\u00a0J Neurol Sci<\/em><\/span>.\u00a02011<\/span>;306<\/span>:183<\/span>\u20137<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/j.jns.2011.02.018<\/span>.<\/p>\r\n

44.<\/span>\u00a0Takano<\/span>\u00a0R<\/span><\/span>,\u00a0Misu<\/span>\u00a0T<\/span><\/span>,\u00a0Takahashi<\/span>\u00a0T<\/span><\/span>,\u00a0et al<\/span>.\u00a0Astrocytic damage is far more severe than demyelination in NMO: A clinical CSF biomarker study<\/span>.\u00a0Neurology<\/em><\/span>.\u00a02010<\/span>;75<\/span>:208<\/span>\u201316<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0b013e3181e2414b<\/span>.<\/p>\r\n

45.<\/span>\u00a0Petzold<\/span>\u00a0A<\/span><\/span>,\u00a0Marignier<\/span>\u00a0R<\/span><\/span>,\u00a0Verbeek<\/span>\u00a0MM<\/span><\/span>,\u00a0Confavreux<\/span>\u00a0C<\/span><\/span>.\u00a0Glial but not axonal protein biomarkers as a new supportive diagnostic criteria for Devic neuromyelitis optica? Preliminary results on 188 patients with different neurological diseases<\/span>.\u00a0J Neurol Neurosurg Psychiatry<\/em><\/span>.\u00a02011<\/span>;82<\/span>:467<\/span>\u20139<\/span>.\u00a0DOI<\/span>:\u00a010.1136\/jnnp.2009.196550<\/span>.<\/p>\r\n

46.<\/span>\u00a0Bernard-Valnet<\/span>\u00a0R<\/span><\/span>,\u00a0Liblau<\/span>\u00a0RS<\/span><\/span>,\u00a0Vukusic<\/span>\u00a0S<\/span><\/span>,\u00a0Marignier<\/span>\u00a0R<\/span><\/span>.\u00a0Neuromyelitis optica: A positive appraisal of seronegative cases<\/span>.\u00a0Eur J Neurol<\/em><\/span>.\u00a02015<\/span>;22<\/span>:1511<\/span>\u20138<\/span>, .\u00a0DOI<\/span>:\u00a010.1111\/ene.12679<\/span>.<\/p>\r\n

47.<\/span>\u00a0Storoni<\/span>\u00a0M<\/span><\/span>,\u00a0Petzold<\/span>\u00a0A<\/span><\/span>,\u00a0Plant<\/span>\u00a0GT<\/span><\/span>.\u00a0The use of serum glial fibrillary acidic protein measurements in the diagnosis of neuromyelitis optica spectrum optic neuritis<\/span>.\u00a0PLoS One<\/em><\/span>.\u00a02011<\/span>;6<\/span>:e23489<\/span>.\u00a0DOI<\/span>:\u00a010.1371\/journal.pone.0023489<\/span>.<\/p>\r\n

48.<\/span>\u00a0Bradl<\/span>\u00a0M<\/span><\/span>,\u00a0Misu<\/span>\u00a0T<\/span><\/span>,\u00a0Takahashi<\/span>\u00a0T<\/span><\/span>,\u00a0et al<\/span>.\u00a0Neuromyelitis optica: Pathogenicity of patient immunoglobulin in vivo<\/span>.\u00a0Ann Neurol<\/em><\/span>.\u00a02009<\/span>;66<\/span>:630<\/span>\u201343<\/span>.\u00a0DOI<\/span>:\u00a010.1002\/ana.21837<\/span>.<\/p>\r\n

49.<\/span>\u00a0Vaknin-Dembinsky<\/span>\u00a0A<\/span><\/span>,\u00a0Brill<\/span>\u00a0L<\/span><\/span>,\u00a0Kassis<\/span>\u00a0I<\/span><\/span>,\u00a0et al<\/span>.\u00a0T-cell reactivity against Aqp4 in neuromyelitis optica. <\/span>Neurology. <\/em><\/span>2012<\/span>;79<\/span>:945<\/span>\u20136<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0b013e318266fc2b<\/span>.<\/p>\r\n

50.<\/span>\u00a0Pr\u00f6bstel<\/span>\u00a0A-K<\/span><\/span>,\u00a0Rudolf<\/span>\u00a0G<\/span><\/span>,\u00a0Dornmair<\/span>\u00a0K<\/span><\/span>,\u00a0et al<\/span>.\u00a0Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype<\/span>.\u00a0J Neuroinflammation<\/em><\/span>.\u00a02015<\/span>;12<\/span>:46<\/span>.\u00a0DOI<\/span>:\u00a010.1186\/s12974-015-0256-1<\/span>.<\/p>\r\n

51.<\/span>\u00a0H\u00f6ftberger<\/span>\u00a0R<\/span><\/span>,\u00a0Sepulveda<\/span>\u00a0M<\/span><\/span>,\u00a0Armangue<\/span>\u00a0T<\/span><\/span>,\u00a0et al<\/span>.\u00a0Antibodies to MOG and Aqp4 in adults with neuromyelitis optica and suspected limited forms of the disease<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02015<\/span>;21<\/span>:866<\/span>\u201374<\/span>.\u00a0DOI<\/span>:\u00a010.1177\/1352458514555785<\/span>.<\/p>\r\n

52.<\/span>\u00a0Ramanathan<\/span>\u00a0S<\/span><\/span>,\u00a0Reddel<\/span>\u00a0SW<\/span><\/span>,\u00a0Henderson<\/span>\u00a0A<\/span><\/span>,\u00a0et al<\/span>.\u00a0Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis<\/span>.\u00a0Neurol Neuroimmunol Neuroinflamm<\/em><\/span>.\u00a02014<\/span>;1<\/span>:e40<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/NXI.0000000000000040<\/span>.<\/p>\r\n

53.<\/span>\u00a0Fujii<\/span>\u00a0C<\/span><\/span>,\u00a0Tokuda<\/span>\u00a0T<\/span><\/span>,\u00a0Ishigami<\/span>\u00a0N<\/span><\/span>,\u00a0et al<\/span>.\u00a0Usefulness of serum S100B as a marker for the acute phase of aquaporin-4 autoimmune syndrome<\/span>.\u00a0Neurosci Lett<\/em><\/span>.\u00a02011<\/span>;494<\/span>:86<\/span>\u20138<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/j.neulet.2011.02.063<\/span>.<\/p>\r\n

54.<\/span>\u00a0Storoni<\/span>\u00a0M<\/span><\/span>,\u00a0Petzold<\/span>\u00a0A<\/span><\/span>,\u00a0Plant<\/span>\u00a0GT<\/span><\/span>.\u00a0The use of serum glial fibrillary acidic protein measurements in the diagnosis of neuromyelitis optica spectrum optic neuritis<\/span>.\u00a0PLoS ONE<\/em><\/span>.\u00a02011<\/span>;6<\/span>:e23489<\/span>.\u00a0DOI<\/span>:\u00a010.1371\/journal.pone.0023489<\/span>.<\/p>\r\n

55.<\/span>\u00a0Carnero Contentti<\/span>\u00a0E<\/span><\/span>,\u00a0Rojas<\/span>\u00a0JI<\/span><\/span>,\u00a0Cristiano<\/span>\u00a0E<\/span><\/span>,\u00a0et al<\/span>.\u00a0Latin American consensus recommendations for management and treatment of neuromyelitis optica spectrum disorders in clinical practice<\/span>.\u00a0Mult Scler Relat Disord. <\/em><\/span>2020<\/span>;45<\/span>:102428<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/j.msard.2020.102428<\/span>.<\/p>\r\n

56.<\/span>\u00a0Stiebel-Kalish<\/span>\u00a0H<\/span><\/span>,\u00a0Hellmann<\/span>\u00a0MA<\/span><\/span>,\u00a0Mimouni<\/span>\u00a0M<\/span><\/span>,\u00a0et al<\/span>.\u00a0Does time equal vision in the acute treatment of a cohort of Aqp4 and MOG optic neuritis<\/span>\u00a0Neurol Neuroimmunol Neuroinflamm<\/em><\/span>.\u00a02019<\/span>;6<\/span>:e572<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/NXI.0000000000000572<\/span>.<\/p>\r\n

57.<\/span>\u00a0Songthammawat<\/span>\u00a0T<\/span><\/span>,\u00a0Srisupa-Olan<\/span>\u00a0T<\/span><\/span>,\u00a0Siritho<\/span>\u00a0S<\/span><\/span>,\u00a0et al<\/span>.\u00a0A pilot study comparing treatments for severe attacks of neuromyelitis optica spectrum disorders: Intravenous methylprednisolone (IVMP) with add-on plasma exchange (PLEX) versus simultaneous IVMP and PLEX<\/span>.\u00a0Mult Scler Relat Disord<\/em><\/span>.\u00a02020<\/span>;38<\/span>:101506<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/j.msard.2019.101506<\/span>.<\/p>\r\n

58.<\/span>\u00a0Abboud<\/span>\u00a0H<\/span><\/span>,\u00a0Petrak<\/span>\u00a0A<\/span><\/span>,\u00a0Mealy<\/span>\u00a0M<\/span><\/span>,\u00a0et al<\/span>.\u00a0Treatment of acute relapses in neuromyelitis optica: Steroids alone versus steroids plus plasma exchange<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02016<\/span>;22<\/span>:185<\/span>\u201392<\/span>.\u00a0DOI<\/span>:\u00a010.1177\/1352458515581438<\/span>.<\/p>\r\n

59.<\/span>\u00a0Collongues<\/span>\u00a0N<\/span><\/span>,\u00a0de Seze<\/span>\u00a0J<\/span><\/span>.\u00a0Current and future treatment approaches for neuromyelitis optica<\/span>.\u00a0Ther Adv Neurol Disord<\/em><\/span>.\u00a02011<\/span>;4<\/span>:111<\/span>\u201321<\/span>.\u00a0DOI<\/span>:\u00a010.1177\/1756285611398939<\/span>.<\/p>\r\n

60.<\/span>\u00a0Huh<\/span>\u00a0S-Y<\/span><\/span>,\u00a0Kim<\/span>\u00a0S-H<\/span><\/span>,\u00a0Hyun<\/span>\u00a0J-W<\/span><\/span>,\u00a0et al<\/span>.\u00a0Short segment myelitis as a first manifestation of neuromyelitis optica spectrum disorders<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02017<\/span>;23<\/span>:413<\/span>\u20139<\/span>.\u00a0DOI<\/span>:\u00a010.1177\/1352458516687043<\/span>.<\/p>\r\n

61.<\/span>\u00a0Kleiter<\/span>\u00a0I<\/span><\/span>,\u00a0Gahlen<\/span>\u00a0A<\/span><\/span>,\u00a0Borisow<\/span>\u00a0N<\/span><\/span>,\u00a0et al<\/span>.\u00a0Apheresis therapies for NMOSD attacks: A retrospective study of 207 therapeutic interventions<\/span>.\u00a0Neurol Neuroimmunol Neuroinflamm<\/em><\/span>.\u00a02018<\/span>;5<\/span>:e504<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/NXI.0000000000000504<\/span>.<\/p>\r\n

62.<\/span>\u00a0Song<\/span>\u00a0W<\/span><\/span>,\u00a0Qu<\/span>\u00a0Y<\/span><\/span>,\u00a0Huang<\/span>\u00a0X<\/span><\/span>.\u00a0Plasma exchange: An effective add-on treatment of optic neuritis in neuromyelitis optica spectrum disorders<\/span>.\u00a0Int Ophthalmol<\/em><\/span>.\u00a02019<\/span>;39<\/span>:2477<\/span>\u201383<\/span>.\u00a0DOI<\/span>:\u00a010.1007\/s10792-019-01090-z<\/span>.<\/p>\r\n

63.<\/span>\u00a0Elsone<\/span>\u00a0L<\/span><\/span>,\u00a0Panicker<\/span>\u00a0J<\/span><\/span>,\u00a0Mutch<\/span>\u00a0K<\/span><\/span>,\u00a0et al<\/span>.\u00a0Role of intravenous immunoglobulin in the treatment of acute relapses of neuromyelitis optica: Experience in 10 patients<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02014<\/span>;20<\/span>:501<\/span>\u20134<\/span>.\u00a0DOI<\/span>:\u00a010.1177\/1352458513495938<\/span>.<\/p>\r\n

64.<\/span>\u00a0Li<\/span>\u00a0X<\/span><\/span>,\u00a0Tian<\/span>\u00a0D-C<\/span><\/span>,\u00a0Fan<\/span>\u00a0M<\/span><\/span>,\u00a0et al<\/span>.\u00a0Intravenous immunoglobulin for acute attacks in neuromyelitis optica spectrum disorders (NMOSD)<\/span>.\u00a0Mult Scler Relat Disord<\/em><\/span>.\u00a02020<\/span>;44<\/span>:102325<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/j.msard.2020.102325<\/span>.<\/p>\r\n

65.<\/span>\u00a0Bichuetti<\/span>\u00a0DB<\/span><\/span>,\u00a0Perin<\/span>\u00a0MM de M<\/span><\/span>,\u00a0Souza<\/span>\u00a0NA de<\/span><\/span>,\u00a0Oliveira<\/span>\u00a0EML de<\/span><\/span>.\u00a0Treating neuromyelitis optica with azathioprine: 20-year clinical practice<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02019<\/span>;25<\/span>:1150<\/span>\u201361<\/span>.\u00a0DOI<\/span>:\u00a010.1177\/1352458518776584<\/span>.<\/p>\r\n

66.<\/span>\u00a0Nikoo<\/span>\u00a0Z<\/span><\/span>,\u00a0Badihian<\/span>\u00a0S<\/span><\/span>,\u00a0Shaygannejad<\/span>\u00a0V<\/span><\/span>,\u00a0et al<\/span>.\u00a0Comparison of the efficacy of azathioprine and rituximab in neuromyelitis optica spectrum disorder: A randomized clinical trial<\/span>.\u00a0J Neurol<\/em><\/span>.\u00a02017<\/span>;264<\/span>:2003<\/span>\u20139<\/span>.\u00a0DOI<\/span>:\u00a010.1007\/s00415-017-8590-0<\/span>.<\/p>\r\n

67.<\/span>\u00a0Elsone<\/span>\u00a0L<\/span><\/span>,\u00a0Kitley<\/span>\u00a0J<\/span><\/span>,\u00a0Luppe<\/span>\u00a0S<\/span><\/span>,\u00a0et al<\/span>.\u00a0Long-term efficacy, tolerability and retention rate of azathioprine in 103 aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder patients: A multicentre retrospective observational study from the UK<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02014<\/span>;20<\/span>:1533<\/span>\u201340<\/span>.\u00a0DOI<\/span>:\u00a010.1177\/1352458514525870<\/span>.<\/p>\r\n

68.<\/span>\u00a0Espiritu<\/span>\u00a0AI<\/span><\/span>,\u00a0Pasco<\/span>\u00a0PMD<\/span><\/span>.\u00a0Efficacy and tolerability of azathioprine for neuromyelitis optica spectrum disorder: A systematic review and Metaanalysis<\/span>.\u00a0Mult Scler Relat Disord<\/em><\/span>.\u00a02019<\/span>;33<\/span>:22<\/span>\u201332<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/j.msard.2019.05.011<\/span>.<\/p>\r\n

69.<\/span>\u00a0Montcuquet<\/span>\u00a0A<\/span><\/span>,\u00a0Collongues<\/span>\u00a0N<\/span><\/span>,\u00a0Papeix<\/span>\u00a0C<\/span><\/span>,\u00a0et al<\/span>.\u00a0Effectiveness of mycophenolate mofetil as first-line therapy in Aqp4-IgG, MOG-IgG, and seronegative neuromyelitis optica spectrum disorders<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02017<\/span>;23<\/span>:1377<\/span>\u201384. <\/span>DOI<\/span>:\u00a010.1177\/1352458516678474<\/span>.<\/p>\r\n

70.<\/span>\u00a0Huh<\/span>\u00a0S-Y<\/span><\/span>,\u00a0Kim<\/span>\u00a0S-H<\/span><\/span>,\u00a0Hyun<\/span>\u00a0J-W<\/span><\/span>,\u00a0et al<\/span>.\u00a0Mycophenolate mofetil in the treatment of neuromyelitis optica spectrum disorder<\/span>.\u00a0JAMA Neurol<\/em><\/span>.\u00a02014<\/span>;71<\/span>:1372<\/span>\u20138<\/span>.\u00a0DOI<\/span>:\u00a010.1001\/jamaneurol.2014.2057<\/span>.<\/p>\r\n

71.<\/span>\u00a0Gao<\/span>\u00a0F<\/span><\/span>,\u00a0Chai<\/span>\u00a0B<\/span><\/span>,\u00a0Gu<\/span>\u00a0C<\/span><\/span>,\u00a0et al<\/span>.\u00a0Effectiveness of rituximab in neuromyelitis optica: A meta-analysis<\/span>.\u00a0BMC Neurol. <\/em><\/span>2019<\/span>;19<\/span>:36. <\/span>DOI<\/span>:\u00a010.1186\/s12883-019-1261-2<\/span>.<\/p>\r\n

72.<\/span>\u00a0Ciron<\/span>\u00a0J<\/span><\/span>,\u00a0Audoin<\/span>\u00a0B<\/span><\/span>,\u00a0Bourre<\/span>\u00a0B<\/span><\/span>,\u00a0et al<\/span>.\u00a0NOMADMUS group, under the aegis of OFSEP, SFSEP. Recommendations for the use of rituximab in neuromyelitis optica spectrum disorders<\/span>.\u00a0Rev Neurol (Paris)<\/em><\/span>.\u00a02018<\/span>;174<\/span>:255<\/span>\u201364. <\/span>DOI<\/span>:\u00a010.1016\/j.neurol.2017.11.005<\/span>.<\/p>\r\n

73.<\/span>\u00a0Damato<\/span>\u00a0V<\/span><\/span>,\u00a0Evoli<\/span>\u00a0A<\/span><\/span>,\u00a0Iorio<\/span>\u00a0R<\/span><\/span>.\u00a0Efficacy and safety of rituximab therapy in neuromyelitis optica spectrum disorders: A systematic review and metanalysis<\/span>.\u00a0JAMA Neurol<\/em><\/span>.\u00a02016<\/span>;73<\/span>:1342<\/span>\u20138<\/span>.\u00a0DOI<\/span>:\u00a010.1001\/jamaneurol.2016.1637<\/span>.<\/p>\r\n

74.<\/span>\u00a0Mealy<\/span>\u00a0MA<\/span><\/span>,\u00a0Wingerchuk<\/span>\u00a0DM<\/span><\/span>,\u00a0Palace<\/span>\u00a0J<\/span><\/span>,\u00a0et al<\/span>.\u00a0Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: Multicenter study of treatment efficacy<\/span>.\u00a0JAMA Neurol<\/em><\/span>.\u00a02014<\/span>;71<\/span>:324<\/span>\u201330. <\/span>DOI<\/span>:\u00a010.1001\/jamaneurol.2013.5699<\/span>.<\/p>\r\n

75.<\/span>\u00a0Jeong<\/span>\u00a0IH<\/span><\/span>,\u00a0Park<\/span>\u00a0B<\/span><\/span>,\u00a0Kim<\/span>\u00a0S-H<\/span><\/span>,\u00a0et al<\/span>.\u00a0Comparative analysis of treatment outcomes in patients with neuromyelitis optica spectrum disorder using multifaceted endpoints<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02016<\/span>;22<\/span>:329<\/span>\u201339<\/span>.\u00a0DOI<\/span>:\u00a010.1177\/1352458515587752<\/span>.<\/p>\r\n

76.<\/span>\u00a0Stellmann<\/span>\u00a0J-P<\/span><\/span>,\u00a0Krumbholz<\/span>\u00a0M<\/span><\/span>,\u00a0Friede<\/span>\u00a0T<\/span><\/span>,\u00a0et al<\/span>.\u00a0Immunotherapies in neuromyelitis optica spectrum disorder: Efficacy and predictors of response<\/span>.\u00a0J Neurol Neurosurg Psychiatry<\/em><\/span>.\u00a02017<\/span>;88<\/span>:639<\/span>\u201347<\/span>.\u00a0DOI<\/span>:\u00a010.1136\/jnnp-2017-315603<\/span>.<\/p>\r\n

77.<\/span>\u00a0Pellkofer<\/span>\u00a0HL<\/span><\/span>,\u00a0Krumbholz<\/span>\u00a0M<\/span><\/span>,\u00a0Berthele<\/span>\u00a0A<\/span><\/span>,\u00a0et al<\/span>.\u00a0Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab<\/span>.\u00a0Neurology<\/em><\/span>.\u00a02011<\/span>;76<\/span>:1310<\/span>\u20135<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0b013e3182152881<\/span>.<\/p>\r\n

78.<\/span>\u00a0Nikoo<\/span>\u00a0Z<\/span><\/span>,\u00a0Badihian<\/span>\u00a0S<\/span><\/span>,\u00a0Shaygannejad<\/span>\u00a0V<\/span><\/span>,\u00a0et al<\/span>.\u00a0Comparison of the efficacy of azathioprine and rituximab in neuromyelitis optica spectrum disorder: A randomized clinical trial<\/span>.\u00a0J Neurol<\/em><\/span>.\u00a02017<\/span>;264<\/span>:2003<\/span>\u20139<\/span>.\u00a0DOI<\/span>:\u00a010.1007\/s00415-017-8590-0<\/span>.<\/p>\r\n

79.<\/span>\u00a0Montcuquet<\/span>\u00a0A<\/span><\/span>,\u00a0Collongues<\/span>\u00a0N<\/span><\/span>,\u00a0Papeix<\/span>\u00a0C<\/span><\/span>,\u00a0et al<\/span>.\u00a0Effectiveness of mycophenolate mofetil as first-line therapy in Aqp4-IgG, MOG-IgG, and seronegative neuromyelitis optica spectrum disorders<\/span>.\u00a0Mult Scler<\/em><\/span>.\u00a02017<\/span>;23<\/span>:1377<\/span>\u201384. <\/span>DOI<\/span>:\u00a010.1177\/1352458516678474<\/span>.<\/p>\r\n

80.<\/span>\u00a0Yang<\/span>\u00a0Y<\/span><\/span>,\u00a0Chen<\/span>\u00a0L<\/span><\/span>,\u00a0Wu<\/span>\u00a0L<\/span><\/span>,\u00a0et al<\/span>.\u00a0Effective rituximab treatment in patients with neuromyelitis optica spectrum disorders compared with azathioprine and mycophenolate<\/span>.\u00a0Neurol Ther<\/em><\/span>.\u00a02022<\/span>;11<\/span>:137<\/span>\u201349<\/span>.\u00a0DOI<\/span>:\u00a010.1007\/s40120-021-00298-5<\/span>.<\/p>\r\n

81.<\/span>\u00a0Marcinn\u00f2<\/span>\u00a0A<\/span><\/span>,\u00a0Marnetto<\/span>\u00a0F<\/span><\/span>,\u00a0Valentino<\/span>\u00a0P<\/span><\/span>,\u00a0et al<\/span>.\u00a0Rituximab-induced hypogammaglobulinemia in patients with neuromyelitis optica spectrum disorders<\/span>.\u00a0Neurol Neuroimmunol Neuroinflamm. <\/em><\/span>2018<\/span>;5<\/span>:e498<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/NXI.0000000000000498<\/span>.<\/p>\r\n

82.<\/span>\u00a0Kim<\/span>\u00a0S-H<\/span><\/span>,\u00a0Huh<\/span>\u00a0S-Y<\/span><\/span>,\u00a0Lee<\/span>\u00a0SJ<\/span><\/span>,\u00a0et al<\/span>.\u00a0A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder<\/span>.\u00a0JAMA Neurol<\/em><\/span>.\u00a02013<\/span>;70<\/span>:1110<\/span>.\u00a0DOI<\/span>:\u00a010.1001\/jamaneurol.2013.3071<\/span>.<\/p>\r\n

83.<\/span>\u00a0Ringelstein<\/span>\u00a0M<\/span><\/span>,\u00a0Ayzenberg<\/span>\u00a0I<\/span><\/span>,\u00a0Harmel<\/span>\u00a0J<\/span><\/span>,\u00a0et al<\/span>.\u00a0Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder<\/span>.\u00a0JAMA Neurol<\/em><\/span>.\u00a02015<\/span>;72<\/span>:756<\/span>\u201363<\/span>.\u00a0DOI<\/span>:\u00a010.1001\/jamaneurol.2015.0533<\/span>.<\/p>\r\n

84.<\/span>\u00a0Tahara<\/span>\u00a0M<\/span><\/span>,\u00a0Oeda<\/span>\u00a0T<\/span><\/span>,\u00a0Okada<\/span>\u00a0K<\/span><\/span>,\u00a0et al<\/span>.\u00a0Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): A multicentre, randomized, double-blind, placebo-controlled trial<\/span>.\u00a0Lancet Neurol<\/em><\/span>.\u00a02020<\/span>;19<\/span>:298<\/span>\u2013306<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/S1474-4422(20)30066-1<\/span>.<\/p>\r\n

85.<\/span>\u00a0Araki<\/span>\u00a0M<\/span><\/span>,\u00a0Matsuoka<\/span>\u00a0T<\/span><\/span>,\u00a0Miyamoto<\/span>\u00a0K<\/span><\/span>,\u00a0et al<\/span>.\u00a0Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: A pilot study<\/span>.\u00a0Neurology<\/em><\/span>.\u00a02014<\/span>;82<\/span>:1302<\/span>\u20136<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0000000000000317<\/span>.<\/p>\r\n

86.<\/span>\u00a0Zhang<\/span>\u00a0C<\/span><\/span>,\u00a0Zhang<\/span>\u00a0M<\/span><\/span>,\u00a0Qiu<\/span>\u00a0W<\/span><\/span>,\u00a0et al<\/span>.\u00a0Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): An open-label, multicentre, randomized, phase 2 trial<\/span>.\u00a0Lancet Neurol<\/em><\/span>.\u00a02020<\/span>;19<\/span>:391<\/span>\u2013401<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/S1474-4422(20)30070-3<\/span>.<\/p>\r\n

87.<\/span>\u00a0Ringelstein<\/span>\u00a0M<\/span><\/span>,\u00a0Ayzenberg<\/span>\u00a0I<\/span><\/span>,\u00a0Lindenblatt<\/span>\u00a0G<\/span><\/span>,\u00a0et al<\/span>.\u00a0Interleukin-6 receptor blockage in treatment-refractory MOG-IgG-associated disease and neuromyelitis optica spectrum disorders<\/span>.\u00a0Neurol Neuroimmunol Neuroinflamm. <\/em><\/span>2022<\/span>;9<\/span>:e1100<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/NXI.0000000000001100<\/span>.<\/p>\r\n

88.<\/span>\u00a0Pittock<\/span>\u00a0SJ<\/span><\/span>,\u00a0Berthele<\/span>\u00a0A<\/span><\/span>,\u00a0Fujihara<\/span>\u00a0K<\/span><\/span>,\u00a0et al<\/span>.\u00a0Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder<\/span>.\u00a0N Engl J Med<\/em><\/span>.\u00a02019<\/span>;381<\/span>:614<\/span>\u201325<\/span>.\u00a0DOI<\/span>:\u00a010.1056\/NEJMoa1900866<\/span>.<\/p>\r\n

89.<\/span>\u00a0Yamamura<\/span>\u00a0T<\/span><\/span>,\u00a0Kleiter<\/span>\u00a0I<\/span><\/span>,\u00a0Fujihara<\/span>\u00a0K<\/span><\/span>,\u00a0et al<\/span>.\u00a0Trial of satralizumab in neuromyelitis optica spectrum disorder<\/span>.\u00a0N Engl J Med<\/em><\/span>.\u00a02019<\/span>;381<\/span>:2114<\/span>\u201324<\/span>.\u00a0DOI<\/span>:\u00a010.1056\/NEJMoa1901747<\/span>.<\/p>\r\n

90.<\/span>\u00a0Cree<\/span>\u00a0BAC<\/span><\/span>,\u00a0Bennett<\/span>\u00a0JL<\/span><\/span>,\u00a0Kim<\/span>\u00a0HJ<\/span><\/span>,\u00a0et al<\/span>.\u00a0Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): A doubleblind, randomised placebo-controlled phase 2\/3 trial<\/span>.\u00a0Lancet<\/em><\/span>.\u00a02019<\/span>;394<\/span>:1352<\/span>\u201363. <\/span>DOI<\/span>:\u00a010.1016\/S0140-6736(19)31817-3<\/span>.<\/p>\r\n

91.<\/span>\u00a0Digala<\/span>\u00a0L<\/span><\/span>,\u00a0Katyal<\/span>\u00a0N<\/span><\/span>,\u00a0Narula<\/span>\u00a0N<\/span><\/span>,\u00a0Govindarajan<\/span>\u00a0R<\/span><\/span>.\u00a0Eculizumab in the treatment of aquaporin-4 seronegative neuromyelitis optica spectrum disorder: A case report<\/span>.\u00a0Front Neurol<\/em><\/span>.\u00a02021<\/span>;12<\/span>:660741<\/span>.\u00a0DOI<\/span>:\u00a010.3389\/fneur.2021.660741<\/span>.<\/p>\r\n

92.<\/span>\u00a0Kleiter<\/span>\u00a0I<\/span><\/span>,\u00a0Traboulsee<\/span>\u00a0A<\/span><\/span>,\u00a0Palace<\/span>\u00a0J<\/span><\/span>,\u00a0et al<\/span>.\u00a0Long-term efficacy of satralizumab in AQP4-IgG-seropositive neuromyelitis optica spectrum disorder from SAkuraSky and SAkuraStar<\/span>.\u00a0Neurol Neuroimmunol Neuroinflamm. <\/em><\/span>2023<\/span>;10<\/span>:e200071<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/NXI.0000000000200071<\/span>.<\/p>\r\n

93.<\/span>\u00a0Traboulsee<\/span>\u00a0A<\/span><\/span>,\u00a0Greenberg<\/span>\u00a0BM<\/span><\/span>,\u00a0Bennett<\/span>\u00a0JL<\/span><\/span>,\u00a0et al<\/span>.\u00a0Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: A randomised, double-blind, multicentre, placebo-controlled phase 3 trial.lancet neurol<\/span>.\u00a0Lancet Neurol<\/em><\/span>.\u00a02020<\/span>;19<\/span>:402<\/span>\u201312<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/S1474-4422(20)30078-8<\/span>.<\/p>\r\n

94.<\/span>\u00a0Marignier<\/span>\u00a0R<\/span><\/span>,\u00a0Pittock<\/span>\u00a0SJ<\/span><\/span>,\u00a0Paul<\/span>\u00a0F<\/span><\/span>,\u00a0et al<\/span>.\u00a0Aqp4-IgG-seronegative patient outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder<\/span>.\u00a0Mult Scler Relat Disord. <\/em><\/span>2022<\/span>;57<\/span>:103356. <\/span>DOI<\/span>:\u00a010.1016\/j.msard.2021.103356<\/span>.<\/p>\r\n

95.<\/span>\u00a0Cree<\/span>\u00a0BAC<\/span><\/span>,\u00a0Bennett<\/span>\u00a0JL<\/span><\/span>,\u00a0Weinshenker<\/span>\u00a0BG<\/span><\/span>,\u00a0et al<\/span>.\u00a0Safety and efficacy of inebilizumab in NMOSD over a mean treatment duration of 3.2 years: End of study data from the N momentum trial [abstract no.P037]<\/span>.\u00a0MultScler<\/em><\/span>.\u00a02021<\/span>;27<\/span>:158<\/span>\u201360<\/span>.<\/p>\r\n

96.<\/span>\u00a0Sheridan<\/span>\u00a0D<\/span><\/span>,\u00a0Yu<\/span>\u00a0Z-X<\/span><\/span>,\u00a0Zhang<\/span>\u00a0Y<\/span><\/span>,\u00a0et al<\/span>.\u00a0Design and preclinical characterization of Alxn1210: A novel anti-C5 antibody with extended duration of action<\/span>.\u00a0PLoS One<\/em><\/span>.\u00a02018<\/span>;13<\/span>:e0195909<\/span>.\u00a0DOI<\/span>:\u00a010.1371\/journal.pone.0195909<\/span>.<\/p>\r\n

97.<\/span>\u00a0Pittock<\/span>\u00a0SJ<\/span><\/span>,\u00a0Barnett<\/span>\u00a0M<\/span><\/span>,\u00a0Bennett<\/span>\u00a0JL<\/span><\/span>,\u00a0et al<\/span>.\u00a0Ravulizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder<\/span>.\u00a0Ann Neurol<\/em><\/span>.\u00a02023<\/span>;93<\/span>:1053<\/span>\u201368<\/span>.\u00a0DOI<\/span>:\u00a010.1002\/ana.26626<\/span>.<\/p>\r\n

98.<\/span>\u00a0Holroyd<\/span>\u00a0KB<\/span><\/span>,\u00a0Manzano<\/span>\u00a0GS<\/span><\/span>,\u00a0Levy<\/span>\u00a0M<\/span><\/span>.\u00a0Update on neuromyelitis optica spectrum disorder<\/span>.\u00a0Curr Opin Ophthalmol. <\/em><\/span>2020<\/span>;31<\/span>:462<\/span>\u20138. <\/span>DOI<\/span>:\u00a010.1097\/ICU.0000000000000703<\/span>.<\/p>\r\n

99.<\/span>\u00a0Mori<\/span>\u00a0S<\/span><\/span>,\u00a0Kurimoto<\/span>\u00a0T<\/span><\/span>,\u00a0Ueda<\/span>\u00a0K<\/span><\/span>,\u00a0Nakamura<\/span>\u00a0M<\/span><\/span>.\u00a0Short-term effect of additional apheresis on visual acuity changes in patients with steroid-resistant optic neuritis in neuromyelitis optica spectrum disorders<\/span>.\u00a0Jpn J Ophthalmol. <\/em><\/span>2018<\/span>;62<\/span>:525<\/span>\u201330<\/span>.\u00a0DOI<\/span>:\u00a010.1007\/s10384-018-0602-9<\/span>.<\/p>\r\n

100.<\/span>\u00a0Zhang<\/span>\u00a0C<\/span><\/span>,\u00a0Tian<\/span>\u00a0D-C<\/span><\/span>,\u00a0Yang<\/span>\u00a0C-S<\/span><\/span>,\u00a0et al<\/span>.\u00a0Safety and efficacy of bortezomib in patients with highly relapsing neuromyelitis optica spectrum disorder<\/span>.\u00a0JAMA Neurol<\/em><\/span>.\u00a02017<\/span>;74<\/span>:1010<\/span>\u20132<\/span>.\u00a0DOI<\/span>:\u00a010.1001\/jamaneurol.2017.1336<\/span>.<\/p>\r\n

101.<\/span>\u00a0Tradtrantip<\/span>\u00a0L<\/span><\/span>,\u00a0Zhang<\/span>\u00a0H<\/span><\/span>,\u00a0Saadoun<\/span>\u00a0S<\/span><\/span>,\u00a0et al<\/span>.\u00a0Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica<\/span>.\u00a0Ann Neurol<\/em><\/span>.\u00a02012<\/span>;71<\/span>:314<\/span>\u201322<\/span>.\u00a0DOI<\/span>:\u00a010.1002\/ana.22657<\/span>.<\/p>\r\n

102.<\/span>\u00a0Burt<\/span>\u00a0RK<\/span><\/span>,\u00a0Balabanov<\/span>\u00a0R<\/span><\/span>,\u00a0Han<\/span>\u00a0X<\/span><\/span>,\u00a0et al<\/span>.\u00a0Autologous nonmyeloablative hematopoietic stem cell transplantation for neuromyelitis optica<\/span>.\u00a0Neurology<\/em><\/span>.\u00a02019<\/span>;93<\/span>:e1732<\/span>\u201341<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.0000000000008394<\/span>.<\/p>\r\n

103.<\/span>\u00a0Zhang<\/span>\u00a0P<\/span><\/span>,\u00a0Liu<\/span>\u00a0B<\/span><\/span>.\u00a0Effect of autologous hematopoietic stem cell transplantation on multiple sclerosis and neuromyelitis optica spectrum disorder: A prismacompliant meta-analysis<\/span>.\u00a0Bone Marrow Transplant<\/em><\/span>.\u00a02020<\/span>;55<\/span>:1928<\/span>\u201334<\/span>.\u00a0DOI<\/span>:\u00a010.1038\/s41409-020-0810-z<\/span>.<\/p>\r\n

104.<\/span>\u00a0Jarius<\/span>\u00a0S<\/span><\/span>,\u00a0Paul<\/span>\u00a0F<\/span><\/span>,\u00a0Weinshenker<\/span>\u00a0BG<\/span><\/span>,\u00a0et al<\/span>.\u00a0Neuromyelitis optica<\/span>.\u00a0Nat Rev Dis Primers<\/em><\/span>.\u00a02020<\/span>;6<\/span>:85<\/span>.\u00a0DOI<\/span>:\u00a010.1038\/s41572-020-0214-9<\/span>.<\/p>\r\n

105.<\/span>\u00a0Kitley<\/span>\u00a0J<\/span><\/span>,\u00a0Leite<\/span>\u00a0MI<\/span><\/span>,\u00a0Nakashima<\/span>\u00a0I<\/span><\/span>,\u00a0et al<\/span>.\u00a0Prognostic factors and disease course in aquaporin-4 antibody-positive patients with neuromyelitis optica spectrum disorder from the United Kingdom and Japan<\/span>.\u00a0Brain<\/em><\/span>.\u00a02012<\/span>;135<\/span>:1834<\/span>\u201349<\/span>.\u00a0DOI<\/span>:\u00a010.1093\/brain\/aws109<\/span>.<\/p>\r\n

106.<\/span>\u00a0Ghezzi<\/span>\u00a0A<\/span><\/span>,\u00a0Bergamaschi<\/span>\u00a0R<\/span><\/span>,\u00a0Martinelli<\/span>\u00a0V<\/span><\/span>,\u00a0et al<\/span>.\u00a0Clinical characteristics, course and prognosis of relapsing Devic\u2019s neuromyelitis optica<\/span>.\u00a0J Neurol<\/em><\/span>.\u00a02004<\/span>;251<\/span>:47<\/span>\u201352<\/span>.\u00a0DOI<\/span>:\u00a010.1007\/s00415-004-0271-0<\/span>.<\/p>\r\n

107.<\/span>\u00a0Wingerchuk<\/span>\u00a0DM<\/span><\/span>,\u00a0Hogancamp<\/span>\u00a0WF<\/span><\/span>,\u00a0O\u2019Brien<\/span>\u00a0PC<\/span><\/span>,\u00a0Weinshenker<\/span>\u00a0BG<\/span><\/span>.\u00a0The clinical course of neuromyelitis optica (Devic\u2019s syndrome)<\/span>.\u00a0Neurology<\/em><\/span>.\u00a01999<\/span>;53<\/span>:1107<\/span>\u20131107<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/WNL.53.5.1107<\/span>.<\/p>\r\n

108.<\/span>\u00a0Wingerchuk<\/span>\u00a0DM<\/span><\/span>,\u00a0Weinshenker<\/span>\u00a0BG<\/span><\/span>.\u00a0Neuromyelitis optica: Clinical predictors of a relapsing course and survival. <\/span>Neurology<\/em><\/span>.\u00a02003<\/span>;60<\/span>:848<\/span>\u201353<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/01.wnl.0000049912.02954.2c<\/span>.<\/p>\r\n

109.<\/span>\u00a0Bar\u0107<\/span>\u00a0K<\/span><\/span>,\u00a0Gospodarczyk-Szot<\/span>\u00a0K<\/span><\/span>,\u00a0Nojszewska<\/span>\u00a0M<\/span><\/span>,\u00a0et al<\/span>.\u00a0The relationship between aquaporin-4 antibody status and visual tract integrity in neuromyelitis optica spectrum disorders: A visual evoked potential study<\/span>.\u00a0Mult Scler Relat Disord<\/em><\/span>.\u00a02020<\/span>;44<\/span>:102265<\/span>.\u00a0DOI<\/span>:\u00a010.1016\/j.msard.2020.102265<\/span>.<\/p>\r\n

110.<\/span>\u00a0Matiello<\/span>\u00a0M<\/span><\/span>,\u00a0Lennon<\/span>\u00a0VA<\/span><\/span>,\u00a0Jacob<\/span>\u00a0A<\/span><\/span>,\u00a0et al<\/span>.\u00a0NMO-IgG predicts the outcome of recurrent optic neuritis. <\/span>Neurology. <\/em><\/span>2008<\/span>;70<\/span>:2197<\/span>\u2013200<\/span>.\u00a0DOI<\/span>:\u00a010.1212\/01.wnl.0000303817.82134.da<\/span>.<\/p>\r\n

111.<\/span>\u00a0Weinshenker<\/span>\u00a0BG<\/span><\/span>,\u00a0Wingerchuk<\/span>\u00a0DM<\/span><\/span>,\u00a0Vukusic<\/span>\u00a0S<\/span><\/span>,\u00a0et al<\/span>.\u00a0Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis<\/span>.\u00a0Ann Neurol<\/em><\/span>.\u00a02006<\/span>;59<\/span>:566<\/span>\u20139<\/span>.\u00a0DOI<\/span>:\u00a010.1002\/ana.20770<\/span>.<\/p>","wpcf-article_received_date":"20230830","wpcf-article_accepted_date":"20231114","wpcf-article_published_online":"20240129","wpcf-podcast":"","wpcf-ogg":"","wpcf-article_end_page":"","wpcf-article_start_page":"","wpcf-acknowledgements":"","wpcf-errata_pdf":"","wpcf-article_flipper_image":"","wpcf-corrected_online":null,"wpcf-supplementary_information":"","wpcf-article_highlight_pdf":"","data_availability":"

\r\n
\r\n
\r\n
\r\n

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study\/during the writing of this article.<\/p>\r\n\r\n<\/div>\r\n<\/div>\r\n<\/div>\r\n<\/div>","digital_features":""},"_links":{"self":[{"href":"https:\/\/touchneurology.com\/wp-json\/wp\/v2\/posts\/74562"}],"collection":[{"href":"https:\/\/touchneurology.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/touchneurology.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/touchneurology.com\/wp-json\/wp\/v2\/users\/142327"}],"replies":[{"embeddable":true,"href":"https:\/\/touchneurology.com\/wp-json\/wp\/v2\/comments?post=74562"}],"version-history":[{"count":11,"href":"https:\/\/touchneurology.com\/wp-json\/wp\/v2\/posts\/74562\/revisions"}],"predecessor-version":[{"id":91467,"href":"https:\/\/touchneurology.com\/wp-json\/wp\/v2\/posts\/74562\/revisions\/91467"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/touchneurology.com\/wp-json\/wp\/v2\/media\/27670"}],"wp:attachment":[{"href":"https:\/\/touchneurology.com\/wp-json\/wp\/v2\/media?parent=74562"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/touchneurology.com\/wp-json\/wp\/v2\/categories?post=74562"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/touchneurology.com\/wp-json\/wp\/v2\/tags?post=74562"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}